深入理解Tensorflow中的masking和padding

TensorFlow是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等。TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机器学习和深度神经网络方面的研究,但这个系统的通用性使其也可广泛用于其他计算领域。

声明:

需要读者对tensorflow和深度学习有一定了解

tf.boolean_mask实现类似numpy数组的mask操作

Python的numpy array可以使用boolean类型的数组作为索引,获得numpy array中对应boolean值为True的项。示例如下:

# numpy array中的boolean mask
import numpy as np
target_arr = np.arange(5)
print "numpy array before being masked:"
print target_arr
mask_arr = [True, False, True, False, False]
masked_arr = target_arr[mask_arr]
print "numpy array after being masked:"
print masked_arr

运行结果如下:

numpy array before being masked: [0 1 2 3 4] numpy array after being masked: [0 2]

tf.boolean_maks对目标tensor实现同上述numpy array一样的mask操作,该函数的参数也比较简单,如下所示:

tf.boolean_mask(
 tensor, # target tensor
 mask, # mask tensor
 axis=None,
 name='boolean_mask'
)

下面,我们来尝试一下tf.boolean_mask函数,示例如下:

import tensorflow as tf
# tensorflow中的boolean mask
target_tensor = tf.constant([[1, 2], [3, 4], [5, 6]])
mask_tensor = tf.constant([True, False, True])
masked_tensor = tf.boolean_mask(target_tensor, mask_tensor, axis=0)
sess = tf.InteractiveSession()
print masked_tensor.eval()

mask tensor中的第0和第2个元素是True,mask axis是第0维,也就是我们只选择了target tensor的第0行和第1行。

[[1 2] [5 6]]

如果把mask tensor也换成2维的tensor会怎样呢?

mask_tensor2 = tf.constant([[True, False], [False, False], [True, False]])
masked_tensor2 = tf.boolean_mask(target_tensor, mask_tensor, axis=0)
print masked_tensor2.eval()

[[1 2] [5 6]]

我们发现,结果不是[[1], [5]]。tf.boolean_mask不做元素维度的mask,tersorflow中有tf.ragged.boolean_mask实现元素维度的mask。

tf.ragged.boolean_mask
tf.ragged.boolean_mask(
 data,
 mask,
 name=None
)

tensorflow中的sparse向量和sparse mask tensorflow中的sparse tensor由三部分组成,分别是indices、values、dense_shape。对于稀疏张量SparseTensor(indices=[[0, 0], [1, 2]], values=[1, 2], dense_shape=[3, 4]),转化成dense tensor的值为:

[[1, 0, 0, 0] [0, 0, 2, 0] [0, 0, 0, 0]]

使用tf.sparse.mask可以对sparse tensor执行mask操作。

tf.sparse.mask(
 a,
 mask_indices,
 name=None
)

上文定义的sparse tensor有1和2两个值,对应的indices为[[0, 0], [1, 2]],执行tf.sparsse.mask(a, [[1, 2]])后,稀疏向量转化成dense的值为:

[[1, 0, 0, 0] [0, 0, 0, 0] [0, 0, 0, 0]]

由于tf.sparse中的大多数函数都只在tensorflow2.0版本中有,所以没有实例演示。

padded_batch

tf.Dataset中的padded_batch函数,根据输入序列中的最大长度,自动的pad一个batch的序列。

padded_batch(
 batch_size,
 padded_shapes,
 padding_values=None,
 drop_remainder=False
)

这个函数与tf.Dataset中的batch函数对应,都是基于dataset构造batch,但是batch函数需要dataset中的所有样本形状相同,而padded_batch可以将不同形状的样本在构造batch时padding成一样的形状。

elements = [[1, 2],
  [3, 4, 5],
  [6, 7],
  [8]]
A = tf.data.Dataset.from_generator(lambda: iter(elements), tf.int32)
B = A.padded_batch(2, padded_shapes=[None])
B_iter = B.make_one_shot_iterator()
print B_iter.get_next().eval()

[[1 2 0] [3 4 5]]

总结

到此这篇关于深入理解Tensorflow中的masking和padding的文章就介绍到这了,更多相关Tensorflow中的masking和padding内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • TensorFlow实现checkpoint文件转换为pb文件

    由于项目需要,需要将TensorFlow保存的模型从ckpt文件转换为pb文件. import os from tensorflow.python import pywrap_tensorflow from net2use import inception_resnet_v2_small#这里使用自己定义的模型函数即可 import tensorflow as tf if __name__=='__main__': pb_file = "./model/output.pb" ckpt_

  • 关于TensorFlow新旧版本函数接口变化详解

    TensorFlow版本更新太快 了,所以导致一些以前接口函数不一致,会报错. 这里总结了一下自己犯的错,以防以后再碰到,也可以给别人参考. 首先我的cifar10的代码都是找到当前最新的tf官网给的,所以后面还有新的tf出来改动了的话,可能又会失效了. 1.python3:(unicode error) 'utf-8' codec can't decode 刚开始执行的时候就报这个错,很郁闷后来发现是因为我用多个编辑器编写, 保存.导致不同编辑器编码解码不一致,会报错.所以唯一的办法全程用 一

  • Tensorflow: 从checkpoint文件中读取tensor方式

    在使用pre-train model时候,我们需要restore variables from checkpoint files. 经常出现在checkpoint 中找不到"Tensor name not found". 这时候需要查看一下ckpt中到底有哪些变量 import os from tensorflow.python import pywrap_tensorflow checkpoint_path = os.path.join(model_dir, "model.

  • 深入理解Tensorflow中的masking和padding

    TensorFlow是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor).它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等.TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机器学习和深度神经网络方面的研究,但这个系统的

  • 对tensorflow中tf.nn.conv1d和layers.conv1d的区别详解

    在用tensorflow做一维的卷积神经网络的时候会遇到tf.nn.conv1d和layers.conv1d这两个函数,但是这两个函数有什么区别呢,通过计算得到一些规律. 1.关于tf.nn.conv1d的解释,以下是Tensor Flow中关于tf.nn.conv1d的API注解: Computes a 1-D convolution given 3-D input and filter tensors. Given an input tensor of shape [batch, in_wi

  • Tensorflow中的图(tf.Graph)和会话(tf.Session)的实现

    Tensorflow编程系统 Tensorflow工具或者说深度学习本身就是一个连贯紧密的系统.一般的系统是一个自治独立的.能实现复杂功能的整体.系统的主要任务是对输入进行处理,以得到想要的输出结果.我们之前见过的很多系统都是线性的,就像汽车生产工厂的流水线一样,输入->系统处理->输出.系统内部由很多单一的基本部件构成,这些单一部件具有特定的功能,且需要稳定的特性:系统设计者通过特殊的连接方式,让这些简单部件进行连接,以使它们之间可以进行数据交流和信息互换,来达到相互配合而完成具体工作的目的

  • 对Tensorflow中权值和feature map的可视化详解

    前言 Tensorflow中可以使用tensorboard这个强大的工具对计算图.loss.网络参数等进行可视化.本文并不涉及对tensorboard使用的介绍,而是旨在说明如何通过代码对网络权值和feature map做更灵活的处理.显示和存储.本文的相关代码主要参考了github上的一个小项目,但是对其进行了改进. 原项目地址为(https://github.com/grishasergei/conviz). 本文将从以下两个方面进行介绍: 卷积知识补充 网络权值和feature map的可

  • 对Tensorflow中tensorboard日志的生成与显示详解

    TensorBoard是TensorFlow下的一个可视化的工具,能够帮助我们在训练大规模神经网络过程中出现的复杂且不好理解的运算.TensorBoard能展示你训练过程中绘制的图像.网络结构等. 1. 构建简单的TensorBoard日志输出 import tensorflow as tf input1 = tf.constant([1.0, 2.0, 3.0], name="input1") input2 = tf.Variable(tf.random_uniform([3], n

  • 浅谈tensorflow中dataset.shuffle和dataset.batch dataset.repeat注意点

    batch很好理解,就是batch size.注意在一个epoch中最后一个batch大小可能小于等于batch size dataset.repeat就是俗称epoch,但在tf中与dataset.shuffle的使用顺序可能会导致个epoch的混合 dataset.shuffle就是说维持一个buffer size 大小的 shuffle buffer,图中所需的每个样本从shuffle buffer中获取,取得一个样本后,就从源数据集中加入一个样本到shuffle buffer中. imp

  • Tensorflow中k.gradients()和tf.stop_gradient()用法说明

    上周在实验室开荒某个代码,看到中间这么一段,对Tensorflow中的stop_gradient()还不熟悉,特此周末进行重新并总结. y = xx + K.stop_gradient(rounded - xx) 这代码最终调用位置在tensoflow.python.ops.gen_array_ops.stop_gradient(input, name=None),关于这段代码为什么这样写的意义在文末给出. [stop_gradient()意义] 用stop_gradient生成损失函数w.r.

  • TensorFlow中如何确定张量的形状实例

    我们可以使用tf.shape()获取某张量的形状张量. import tensorflow as tf x = tf.reshape(tf.range(1000), [10, 10, 10]) sess = tf.Session() sess.run(tf.shape(x)) Out[1]: array([10, 10, 10]) 我们可以使用tf.shape()在计算图中确定改变张量的形状. high = tf.shape(x)[0] // 2 width = tf.shape(x)[1] *

  • 浅谈python中的@以及@在tensorflow中的作用说明

    虽然用python用了很久了,但是主要还是写一些模型或者算子,对于python中的高级特性用的不多,但是时常阅读大牛的代码或者框架源码,其中python特性应用的非常流畅,所以今天决定与python中的装饰器@,做个了断!! Python中的@: 援引廖雪峰老师对装饰器的解释以及一些自己对装饰器的理解: python中在代码运行期间动态增加功能的方式,称之为"装饰器"(Decorator).@是装饰器的语法.装饰器是在函数调用之上的修饰,这些修饰仅是当声明一个函数或者方法的时候,才会应

  • 深入理解python中函数传递参数是值传递还是引用传递

    目前网络上大部分博客的结论都是这样的: Python不允许程序员选择采用传值还是传 引用.Python参数传递采用的肯定是"传对象引用"的方式.实际上,这种方式相当于传值和传引用的一种综合.如果函数收到的是一个可变对象(比如字典 或者列表)的引用,就能修改对象的原始值--相当于通过"传引用"来传递对象.如果函数收到的是一个不可变对象(比如数字.字符或者元组)的引用,就不能 直接修改原始对象--相当于通过"传值"来传递对象. 你可以在很多讨论该问题

随机推荐