Pandas数据分析的一些常用小技巧

Pandas小技巧

import pandas as pd

pandas生成数据

d = {"sex": ["male", "female", "male", "female"],
 "color": ["red", "green", "blue", "yellow"],
 "age": [12, 56, 21, 31]}
df = pd.DataFrame(d)
df
sex color age
0 male red 12
1 female green 56
2 male blue 21
3 female yellow 31

数据替换–map映射

map() 会根据提供的函数对指定序列做映射。

map(function, iterable, …)

  • function – 函数
  • iterable – 一个或多个序列
d = {"male": 1, "female": 0}
df["gender"] = df["sex"].map(d)
df
sex color age gender
0 male red 12 1
1 female green 56 0
2 male blue 21 1
3 female yellow 31 0

数据清洗–replace和正则

分享pandas数据清洗技巧,在某列山使用replace和正则快速完成值的清洗

d = {"customer": ["A", "B", "C", "D"],
 "sales": [1000, "950.5RMB", "$400", "$1250.75"]}
df = pd.DataFrame(d)
df
customer sales
0 A 1000
1 B 950.5RMB
2 C $400
3 D $1250.75

sales列的数据类型不同意,为后续分析,所以需要将他的格式同统一

df["sales"] = df["sales"].replace("[$,RMB]", "", regex=True).astype("float")
df
customer sales
0 A 1000.00
1 B 950.50
2 C 400.00
3 D 1250.75

查看数据类型

df["sales"].apply(type)

0    <class 'float'>
1    <class 'float'>
2    <class 'float'>
3    <class 'float'>
Name: sales, dtype: object

数据透视表分析–melt函数

melt是逆转操作函数,可以将列名转换为列数据(columns name → column values),重构DataFrame,用法如下:

参数说明:

pandas.melt(frame, id_vars=None, value_vars=None, var_name=None, value_name=‘value', col_level=None)

  • frame:要处理的数据集。
  • id_vars:不需要被转换的列名。
  • value_vars:需要转换的列名,如果剩下的列全部都要转换,就不用写了。
  • var_name和value_name是自定义设置对应的列名。
  • col_level :如果列是MultiIndex,则使用此级别。

二维表格转成一维表格

d = {"district_code": [12345, 56789, 101112, 131415],
 "apple": [5.2, 2.4, 4.2, 3.6],
 "banana": [3.5, 1.9, 4.0, 2.3],
 "orange": [8.0, 7.5, 6.4, 3.9]
 }
df = pd.DataFrame(d)
df
district_code apple banana orange
0 12345 5.2 3.5 8.0
1 56789 2.4 1.9 7.5
2 101112 4.2 4.0 6.4
3 131415 3.6 2.3 3.9
df = df.melt(id_vars="district_code",
  var_name="fruit_name",
  value_name="price")
df
district_code fruit_name price
0 12345 apple 5.2
1 56789 apple 2.4
2 101112 apple 4.2
3 131415 apple 3.6
4 12345 banana 3.5
5 56789 banana 1.9
6 101112 banana 4.0
7 131415 banana 2.3
8 12345 orange 8.0
9 56789 orange 7.5
10 101112 orange 6.4
11 131415 orange 3.9

将分类中出现次数较少的值归为others

d = {"name": ['Jone', 'Alica', 'Emily', 'Robert', 'Tomas',
  'Zhang', 'Liu', 'Wang', 'Jack', 'Wsx', 'Guo'],
 "categories": ["A", "C", "A", "D", "A",
   "B", "B", "C", "A", "E", "F"]}
df = pd.DataFrame(d)
df
name categories
0 Jone A
1 Alica C
2 Emily A
3 Robert D
4 Tomas A
5 Zhang B
6 Liu B
7 Wang C
8 Jack A
9 Wsx E
10 Guo F

D、E、F 仅在分类中出现一次,A 出现次数较多。

统计出现次数,并标准化

frequencies = df["categories"].value_counts(normalize=True)
frequencies

A    0.363636
B    0.181818
C    0.181818
E    0.090909
D    0.090909
F    0.090909
Name: categories, dtype: float64

设定阈值

threshold = 0.1
small_categories = frequencies[frequencies < threshold].index
small_categories
Index(['E', 'D', 'F'], dtype='object')

替换

df["categories"] = df["categories"].replace(small_categories, "Others")
df
name categories
0 Jone A
1 Alica C
2 Emily A
3 Robert Others
4 Tomas A
5 Zhang B
6 Liu B
7 Wang C
8 Jack A
9 Wsx Others
10 Guo Others

Python小技巧

列表推导式

例如,假设我们想创建一个正方形列表,例如

squares = []
for x in range(10):
 squares.append(x**2)
squares

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

squares = list(map(lambda x: x**2, range(10)))
squares

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

squares = [x**2 for x in range(10)]
squares

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

同时还可以利用if来过滤列表

[(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]

[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

列表推导式可以包含复杂表达式和嵌套函数

from math import pi
[str(round(pi, i)) for i in range(1, 6)]

['3.1', '3.14', '3.142', '3.1416', '3.14159']

列表推导式中的初始表达式可以是任意表达式,包括另一个列表推导式。

下面的列表推导式将对行和列进行转置

matrix = [
 [1, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12],
]
[[row[i] for row in matrix] for i in range(4)]

[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

交换变量

a = 1
b = 2
a, b = b, a
print("a = ",a)
print("b = ",b)

a =  2
b =  1

检查对象使用内存情况

sys.getsizeof()

range()函数返回的是一个类,在使用内存方面,range远比实际的数字列表更加高效

import sys
mylist = range(1,10000)
print(sys.getsizeof(mylist))

48

合并字典

从Python3.5开始,合并字典的操作更加简单

如果key重复,那么第一个字典的key会被覆盖

d1 ={"a":1,"b":2}
d2 = {"b":2,"c":4}
m = {**d1,**d2}
print(m)

{'a': 1, 'b': 2, 'c': 4}

字符串分割成列表

string = "the author is beishanla"
s = string.split(" ")
s

['the', 'author', 'is', 'beishanla']

字符串列表创建字符串

l = ["the","author","is","beishanla"]
l = " ".join(l)
l

'the author is beishanla'

Python查看图片

pip install Pillow
from PIL import Image
im = Image.open("E:/Python/00网络爬虫/Project/词云图跳舞视频/aip-python-sdk-4.15.1/pictures/img_88.jpg")
im.show()
print(im.format,im.size,im.mode)

JPEG (1920, 1080) RGB

欢迎搜藏,持续更新

总结

到此这篇关于Pandas数据分析的一些常用小技巧的文章就介绍到这了,更多相关Pandas数据分析技巧内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python数据分析pandas模块用法实例详解

    本文实例讲述了Python数据分析pandas模块用法.分享给大家供大家参考,具体如下: pandas pandas10分钟入门,可以查看官网:10 minutes to pandas 也可以查看更复杂的cookbook pandas是非常强大的数据分析包,pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包.就好比 Numpy的核心是 ndarray,pandas 围绕着 Series 和 DataFrame 两个核心数据结构展开 .Series和DataFrame 分

  • Python操作MySQL数据库的两种方式实例分析【pymysql和pandas】

    本文实例讲述了Python操作MySQL数据库的两种方式.分享给大家供大家参考,具体如下: 第一种 使用pymysql 代码如下: import pymysql #打开数据库连接 db=pymysql.connect(host='1.1.1.1',port=3306,user='root',passwd='123123',db='test',charset='utf8') cursor=db.cursor()#使用cursor()方法获取操作游标 sql = "select * from tes

  • 基于Python数据分析之pandas统计分析

    pandas模块为我们提供了非常多的描述性统计分析的指标函数,如总和.均值.最小值.最大值等,我们来具体看看这些函数: 1.随机生成三组数据 import numpy as np import pandas as pd np.random.seed(1234) d1 = pd.Series(2*np.random.normal(size = 100)+3) d2 = np.random.f(2,4,size = 100) d3 = np.random.randint(1,100,size = 1

  • VBA处理数据与Python Pandas处理数据案例比较分析

    需求: 现有一个 csv文件,包含'CNUM'和'COMPANY'两列,数据里包含空行,且有内容重复的行数据. 要求: 1)去掉空行: 2)重复行数据只保留一行有效数据: 3)修改'COMPANY'列的名称为'Company_New': 4)并在其后增加六列,分别为'C_col','D_col','E_col','F_col','G_col','H_col'. 一,使用 Python Pandas来处理: import pandas as pd import numpy as np from p

  • Python数据分析之真实IP请求Pandas详解

    前言 pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的 .Series 和 DataFrame 分别对应于一维的序列和二维的表结构.pandas 约定俗成的导入方法如下: from pandas import Series,DataFrame import pandas as pd 1.1. Pandas分析步骤 1.载入日志数据 2.载

  • Python数据分析:手把手教你用Pandas生成可视化图表的教程

    大家都知道,Matplotlib 是众多 Python 可视化包的鼻祖,也是Python最常用的标准可视化库,其功能非常强大,同时也非常复杂,想要搞明白并非易事.但自从Python进入3.0时代以后,pandas的使用变得更加普及,它的身影经常见于市场分析.爬虫.金融分析以及科学计算中. 作为数据分析工具的集大成者,pandas作者曾说,pandas中的可视化功能比plt更加简便和功能强大.实际上,如果是对图表细节有极高要求,那么建议大家使用matplotlib通过底层图表模块进行编码.当然,我

  • Python数据分析模块pandas用法详解

    本文实例讲述了Python数据分析模块pandas用法.分享给大家供大家参考,具体如下: 一 介绍 pandas(Python Data Analysis Library)是基于numpy的数据分析模块,提供了大量标准数据模型和高效操作大型数据集所需要的工具,可以说pandas是使得Python能够成为高效且强大的数据分析环境的重要因素之一. pandas主要提供了3种数据结构: 1)Series,带标签的一维数组. 2)DataFrame,带标签且大小可变的二维表格结构. 3)Panel,带标

  • 详解Python数据分析--Pandas知识点

    本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘 1. 重复值的处理 利用drop_duplicates()函数删除数据表中重复多余的记录, 比如删除重复多余的ID. import pandas as pd df = pd.DataFrame({"ID": ["A1000","A1001","A1002", "A1002"], "departmentId":

  • Python数据分析库pandas基本操作方法

    pandas是什么? 是它吗? ....很显然pandas没有这个家伙那么可爱.... 我们来看看pandas的官网是怎么来定义自己的: pandas is an open source, easy-to-use data structures and data analysis tools for the Python programming language. 很显然,pandas是python的一个非常强大的数据分析库! 让我们来学习一下它吧! 1.pandas序列 import nump

  • Pandas数据分析的一些常用小技巧

    Pandas小技巧 import pandas as pd pandas生成数据 d = {"sex": ["male", "female", "male", "female"], "color": ["red", "green", "blue", "yellow"], "age": [1

  • Javascript常用小技巧汇总

    本文实例讲述了Javascript常用小技巧.分享给大家供大家参考.具体分析如下: 一.True 和 False 布尔表达式 下面的布尔表达式都返回 false: null undefined '' 空字符串 0 数字0 但小心下面的, 可都返回 true: '0' 字符串0 [] 空数组 {} 空对象 下面段比较糟糕的代码: 复制代码 代码如下: while (x != null) { 你可以直接写成下面的形式(只要你希望 x 不是 0 和空字符串, 和 false): 复制代码 代码如下:

  • Android ListView常用小技巧汇总

    ListView在我们Android项目中的地位是有目共睹的,相信几乎每一个App中都有它的身影. ListView主要是用列表形式来加载数据,在特定情况下需要实现一些特殊功能:如刷新数据,加载数据,实现动画效果等. 作为我们常用的控件,有哪些需要注意的呢? **为ListView的每一Item设置分隔线 第一种方法:也是最简单地方法,在布局文件中设置ListView的 divider属性 如:android:divider="@color/black" 第二种方法:设置android

  • ES6常用小技巧总结【去重、交换、合并、反转、迭代、计算等】

    本文实例讲述了ES6常用小技巧.分享给大家供大家参考,具体如下: 1- 数组去重 var arr = [1,2,3,4,3,4]; var arr2 = [...new Set(arr)]; 这个时候arr2就是去重后的数组~ 2- 交换两个变量的值 let [x,y] = [1,2]; [y,x] = [x,y]; console.log(y); 3- 获取字符串中的某个字符 let arr= "hellomybo"; console.log(arr[3]); 4- 使用箭头函数代替

  • pandas参数设置的实用小技巧

    前言 在日常使用pandas的过程中,由于我们所分析的数据表规模.格式上的差异,使得同样的函数或方法作用在不同数据上的效果存在差异. 而pandas有着自己的一套参数设置系统,可以帮助我们在遇到不同的数据时灵活调节从而达到最好的效果,本文就将介绍pandas中常用的参数设置方面的知识. 图1 1 设置DataFrame最大显示行数 pandas设置参数中的display.max_rows用于控制打印出的数据框的最大显示行数,我们使用pd.set_option()来有针对的设置参数,如下面的例子:

  • ASP.NET常用小技巧

    今天为大家介绍6个ASP.NET常用技巧,使用操作简单,具有很高的实用性,记得收藏哦 1.跟踪页面执行  设置断点是页面调试过程中的常用手段,除此之外,还可以通过查看页面的跟踪信息进行错误排查以及性能优化.ASP.NET中启用页面跟踪非常方便,只需在Page指令中加入Trace="True"属性即可:设置断点是页面调试过程中的常用手段,除此之外,还可以通过查看页面的跟踪信息进行错误排查以及性能优化.ASP.NET中启用页面跟踪非常方便,只需在Page指令中加入Trace="T

  • Python常用小技巧总结

    本文实例总结了Python常用的小技巧.分享给大家供大家参考.具体分析如下: 1. 获取本地mac地址: import uuid mac = uuid.uuid1().hex[-12:] print(mac) 运行结果:e0cb4e077585 2. del 的使用 a = ['b','c','d'] del a[0] print(a)# 输出 ['c', 'd'] a = ['b','c','d'] del a[0:2] # 删除从第1个元素开始,到第2个元素 print(a)# 输出 ['d

  • CSS样式表常用小技巧收藏

    · ul 标签在 Mozilla 中默认是有 padding 值的,而在 IE 中只有 margin 有值. · 同一个的 class 选择符可以在一个文档中重复出现,而 id 选择符却只能出现一次:对一个标签同时使用 class和 id 进行 CSS 定义,如果定义有重复,id 选择符做的定义有效. · 初学可能会碰到这样一个情况,同样一个标签的属性在 IE 设置成 A 显示是正常的,而在 Mozilla 里必须要设成 B 才能正常显示,或者两个倒过来. 临时解决方法:选择符 {属性名:B !

  • jQuery、zepto、js常用小技巧

    以下只为记录自己工作常用的片段和心得, 如有问题请指正, 多谢~ jQuery/zepto判断元素是否存在 // 判断长度是否存在, 正确 if ($elem.length) { } // 错误, 因为空数组也是true if ($elem) { } 合理判断数据类型 先看代码: function case(str) { return str.match(/reg/); } 看着没问题, 但当 str 为空(false, null等)时就挂了, 适当的检查让代码更健壮, 如: function

  • 网页代码常用小技巧总结第1/3页

    1.让浏览器窗口永远都不出现滚动条. <body style="overflow-x:hidden;overflow-y:hidden">或<body style="overflow:hidden"> 或<body scroll=no> 2,没有水平滚动条 <body style="overflow-x:hidden"> 3,没有垂直滚动条 <body style="overflow

随机推荐