详解Python中的GIL(全局解释器锁)详解及解决GIL的几种方案

先看一道GIL面试题:

描述Python GIL的概念, 以及它对python多线程的影响?编写一个多线程抓取网页的程序,并阐明多线程抓取程序是否可比单线程性能有提升,并解释原因。

GIL:又叫全局解释器锁,每个线程在执行的过程中都需要先获取GIL,保证同一时刻只有一个线程在运行,目的是解决多线程同时竞争程序中的全局变量而出现的线程安全问题。它并不是python语言的特性,仅仅是由于历史的原因在CPython解释器中难以移除,因为python语言运行环境大部分默认在CPython解释器中。

通过一个案例了解单线程和多线程的cpu占用率:

打开Ubuntu终端命令:输入htop,回车,红色箭头指向的2代表此时我的虚拟机中CPU有两个核心数

下面通过一个案例了解单线程死循环和多线程死循环的CPU占用率:

单线程死循环.py:

#coding=utf-8
while True:
  pass

运行该程序,出现以下界面:

此时新开一个窗口,输入htop,查看CPU占用率,其中一个CPU占用率几乎为100%:

两个线程死循环.py

#coding=utf-8
import threading

#子线程死循环
def test():
  while True:
    pass

t1=threading.Thread(target=test)
t1.start()

#主线程死循环,
while True:
  pass

此时新开一个终端,输入htop查看CPU占用率,可以看到两个CPU任何一个并没有全部占满,而是交替执行的:

这也就验证了多线程下每个线程在执行的过程中都需要先获取GIL,保证同一时刻只有一个线程在运行。

由于GIL的存在,即使是多线程,事实上同一时刻只能保证一个线程在运行,既然这样多线程的运行效率不就和单线程一样了吗,那为什么还要使用多线程呢?

由于以前的电脑基本都是单核CPU,多线程和单线程几乎看不出差别,可是由于计算机的迅速发展,现在的电脑几乎都是多核CPU了,最少也是两个核心数的,这时差别就出来了:通过之前的案例我们已经知道,即使在多核CPU中,多线程同一时刻也只有一个线程在运行,这样不仅不能利用多核CPU的优势,反而由于每个线程在多个CPU上是交替执行的,导致在不同CPU上切换时造成资源的浪费,反而会更慢。即原因是一个进程只存在一把gil锁,当在执行多个线程时,内部会争抢gil锁,这会造成当某一个线程没有抢到锁的时候会让cpu等待,进而不能合理利用多核cpu资源。

例如在使用多线程抓取网页内容时,遇到IO阻塞时,正在执行的线程会暂时释放GIL锁,这时其它线程会利用这个空隙时间,执行自己的代码,因此多线程抓取比单线程抓取性能要好。

说到在这里要先介绍两个概念:计算密集型和IO密集型

计算密集型:要进行大量的数值计算,例如进行上亿的数字计算、计算圆周率、对视频进行高清解码等等。这种计算密集型任务虽然也可以用多任务完成,但是花费的主要时间在任务切换的时间,此时CPU执行任务的效率比较低。

IO密集型:涉及到网络请求(time.sleep())、磁盘IO的任务都是IO密集型任务,这类任务的特点是CPU消耗很少,任务的大部分时间都在等待IO操作完成(因为IO的速度远远低于CPU和内存的速度)。对于IO密集型任务,任务越多,CPU效率越高,但也有一个限度。

解决GIL问题的方案:

1.使用其它语言,例如C,Java

2.使用其它解释器,如java的解释器jython

3.使用多进程

线程释放GIL锁的情况:

1.在IO操作等可能会引起阻塞的system call之前,可以暂时释放GIL,但在执行完毕后,必须重新获取GIL。

2.Python 3.x使用计时器(执行时间达到阈值后,当前线程释放GIL)或Python 2.x,tickets计数达到100。

GIL面试题参考答案:

  • Python语言和GIL没有什么关系。仅仅是由于历史原因在Cpython虚拟机(解释器),难以移除GIL。
  • GIL:全局解释器锁。每个线程在执行的过程都需要先获取GIL,保证同一时刻只有一个线程可以执行代码。
  • 线程释放GIL锁的情况: 在IO操作等可能会引起阻塞的system call之前,可以暂时释放GIL,但在执行完毕后,必须重新获取GIL Python 3.x使用计时器(执行时间达到阈值后,当前线程释放GIL)或Python 2.x,tickets计数达到100。
  • Python使用多进程是可以利用多核的CPU资源的。
  • 多线程爬取比单线程性能有提升,因为遇到IO阻塞会自动释放GIL锁。

到此这篇关于详解Python中的GIL(全局解释器锁)详解及解决GIL的几种方案的文章就介绍到这了,更多相关Python GIL全局解释器锁内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Cpython解释器中的GIL全局解释器锁

    1.什么是GIL全局解释器锁 GIL:Global Interpreter Lock,意思就是全局解释器锁,这个GIL并不是Python的特性,他是只在Cpython解释器里引入的一个概念,而在其他的语言编写的解释器里就没有GIL,例如:Jython,Pypy等 下面是官方给出的解释: In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threads from exe

  • 详解Python中的GIL(全局解释器锁)详解及解决GIL的几种方案

    先看一道GIL面试题: 描述Python GIL的概念, 以及它对python多线程的影响?编写一个多线程抓取网页的程序,并阐明多线程抓取程序是否可比单线程性能有提升,并解释原因. GIL:又叫全局解释器锁,每个线程在执行的过程中都需要先获取GIL,保证同一时刻只有一个线程在运行,目的是解决多线程同时竞争程序中的全局变量而出现的线程安全问题.它并不是python语言的特性,仅仅是由于历史的原因在CPython解释器中难以移除,因为python语言运行环境大部分默认在CPython解释器中. 通过

  • Python并发编程多进程,多线程及GIL全局解释器锁

    目录 1. 并发与并行 2. 线程与进程的应用场景 2.1. 并行/并发编程相关的技术栈 3. Python中的GIL是什么,它影响什么 1. 并发与并行 所谓的并行(Parallelism),就是多个彼此独立的任务可以同时一起执行,彼此并不相互干扰,并行强调的是同时且独立的运行,彼此不需要协作. 而所谓并发(Concurrency),则是多个任务彼此交替执行,但是同一时间只能有一个处于运行状态,并发执行强调任务之间的彼此协作. 并发通常被误解为并行,并发实际是隐式的调度独立的代码,以协作的方式

  • 详解Python中生成随机数据的示例详解

    目录 随机性有多随机 加密安全性 PRNG random 模块 数组 numpy.random 相关数据的生成 random模块与NumPy对照表 CSPRNG 尽可能随机 os.urandom() secrets 最佳保存方式 UUID 工程随机性的比较 在日常工作编程中存在着各种随机事件,同样在编程中生成随机数字的时候也是一样,随机有多随机呢?在涉及信息安全的情况下,它是最重要的问题之一.每当在 Python 中生成随机数据.字符串或数字时,最好至少大致了解这些数据是如何生成的. 用于在 P

  • 对Python中GIL(全局解释器锁)的一点理解浅析

    目录 前言 为什么需要 GIL GIL 的实现 几点说明 GIL 优化 用户数据的一致性不能依赖 GIL 总结 参考文档 前言 GIL(Global Interpreter Lock),全局解释器锁,是 CPython 为了避免在多线程环境下造成 Python 解释器内部数据的不一致而引入的一把锁,让 Python 中的多个线程交替运行,避免竞争. 需要说明的是 GIL 不是 Python 语言规范的一部分,只是由于 CPython 实现的需要而引入的,其他的实现如 Jython 和 PyPy

  • 详解python中的 is 操作符

    大家可以与Java中的 == 操作符相互印证一下,加深一下对引用和对象的理解.原问题: Python为什么直接运行和在命令行运行同样语句但结果却不同,他们的缓存机制不同吗? 其实,高票答案已经说得很详细了.我只是再补充一点而已. is 操作符是Python语言的一个内建的操作符.它的作用在于比较两个变量是否指向了同一个对象. 与 == 的区别 class A(): def __init__(self, v): self.value = v def __eq__(self, t): return

  • 详解Python中的多线程编程

    一.简介 多线程编程技术可以实现代码并行性,优化处理能力,同时功能的更小划分可以使代码的可重用性更好.Python中threading和Queue模块可以用来实现多线程编程. 二.详解 1.线程和进程        进程(有时被称为重量级进程)是程序的一次执行.每个进程都有自己的地址空间.内存.数据栈以及其它记录其运行轨迹的辅助数据.操作系统管理在其上运行的所有进程,并为这些进程公平地分配时间.进程也可以通过fork和spawn操作来完成其它的任务,不过各个进程有自己的内存空间.数据栈等,所以只

  • Python中线程threading.Thread的使用详解

    目录 1. 线程的概念 2. threading.thread()的简单使用 2.1 添加线程可以是程序运行更快 2.2 主线程会等待所有的子线程结束后才结束 3.查看线程数量 4.线程参数及顺序 4.1 传递参数的方法 4.2 线程的执行顺序 5. 守护线程 1. 线程的概念 线程,有时被称为轻量级进程(Lightweight Process,LWP),是程序执行流的最小单元.一个标准的线程由线程ID,当前指令指针(PC),寄存器集合和堆栈组成.另外,线程是进程中的一个实体,是被系统独立调度和

  • Python中__init__.py文件的作用详解

    __init__.py 文件的作用是将文件夹变为一个Python模块,Python 中的每个模块的包中,都有__init__.py 文件. 通常__init__.py 文件为空,但是我们还可以为它增加其他的功能.我们在导入一个包时,实际上是导入了它的__init__.py文件.这样我们可以在__init__.py文件中批量导入我们所需要的模块,而不再需要一个一个的导入. # package # __init__.py import re import urllib import sys impo

  • Python 中闭包与装饰器案例详解

    项目github地址:bitcarmanlee easy-algorithm-interview-and-practice 1.Python中一切皆对象 这恐怕是学习Python最有用的一句话.想必你已经知道Python中的list, tuple, dict等内置数据结构,当你执行: alist = [1, 2, 3] 时,你就创建了一个列表对象,并且用alist这个变量引用它: 当然你也可以自己定义一个类: class House(object): def __init__(self, are

随机推荐