Java 数据结构与算法系列精讲之背包问题

概述

从今天开始, 小白我将带大家开启 Java 数据结构 & 算法的新篇章.

动态规划

动态规划 (Dynamic Programming) 的核心思想是把大问题划分为小问题进行解决. 先求解子问题, 然后从这些子问题的解得到原问题的解.

动态规划的优点:

  • 可以帮助我们解决多阶段问题, 化繁为简

动态规划的缺点:

  • 没有统一的处理方法, 具体问题具体分析
  • 当变量的维数增大时, 计算和存储会急剧增大

背包问题

背包问题 (Knapsack Problem) 指有 N 件物品和一个容量为 V 的背包. 第 i 件物品的费用是 c[i],价值是 w[i]. 求解将哪些物品装入背包可使价值总和最大.

代码实现

public class 背包问题 {

    public static void main(String[] args) {

        int[] w = {1, 2, 3};  // 物品重量
        int[] val = {6, 10, 12};  // 物品价值
        int m = 5;  // 背包容量
        int n = val.length;  //

        // 创建二维数组
        int[][] v = new int[n + 1][m + 1];

        // 将第一行和第一列赋值为0
        for (int i = 0; i < v.length; i++) {
            v[i][0] = 0;
        }

        for (int i = 0; i < v[0].length; i++) {
            v[0][i] = 0;
        }

        // 动态处理
        for (int i = 1; i < v.length; i++) {
            for (int j = 1; j < v[0].length; j++) {

                if (w[i - 1] > j) {
                    // 不装入背包
                    v[i][j] = v[i - 1][j];
                } else {
                    // 装入背包
                    v[i][j] = Math.max(v[i - 1][j], val[i - 1] + v[i - 1][j - w[i - 1]]);
                }
            }
        }

        // 输出二维数组
        for (int i = 1; i < v.length; i++) {
            for (int j = 1; j < v[0].length; j++) {
                System.out.print(v[i][j] + "\t");
            }
            System.out.println();
        }
    }
}

输出结果:

6 6 6 6 6
6 10 16 16 16
6 10 16 18 22

到此这篇关于Java 数据结构与算法系列精讲之背包问题的文章就介绍到这了,更多相关Java 背包问题内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 背包问题-动态规划java实现的分析与代码

    一.动态规划的原理 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法.20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法–动态规划.1957年

  • Java背包问题求解实例代码

    背包问题主要是指一个给定容量的背包.若干具有一定价值和重量的物品,如何选择物品放入背包使物品的价值最大.其中又分01背包和无限背包,这里主要讨论01背包,即每个物品最多放一个.而无限背包可以转化为01背包. 先说一下算法的主要思想,利用动态规划来解决.每次遍历到的第i个物品,根据w[i]和v[i]来确定是否需要将该物品放入背包中.即对于给定的n个物品,设v[i].w[i]分别为第i个物品的价值和重量,C为背包的容量.再令v[i][j]表示在前i个物品中能够装入容量为j的背包中的最大价值.则我们有

  • Java实现动态规划背包问题

    目录 前言 一.原理 1.1 最优子结构性质 1.2 递归关系 二.算法描述 2.1 算法描述 2.2 图解 2.3 构造最优解 三. 0 − 1 0-1 0−1 背包问题相关题目 3.1 题目 3.2 源程序(Java求解 0 − 1 0-1 0−1背包问题) 3.3 运行结果 总结 前言 给定 n n n 种物品和一个背包.物品 i i i 的重量是 w i wi wi,其价值为 v i vi vi,背包的容量为 c c c.问应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 一.

  • 浅谈java实现背包算法(0-1背包问题)

    0-1背包的问题 背包问题(Knapsack problem)是一种组合优化的NP完全问题.问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高.问题的名称来源于如何选择最合适的物品放置于给定背包中. 这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放. 用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值.则其状态转移方程便是: f[i][v]=max{ f[i-1][v], f

  • java背包问题动态规划算法分析

    背包问题 [题目描述] 一个旅行者有一个最多能装 MM 公斤的背包,现在有 nn 件物品,它们的重量分别是W1,W2,-,WnW1,W2,-,Wn,它们的价值分别为C1,C2,-,CnC1,C2,-,Cn,求旅行者能获得最大总价值. [输入] 第一行:两个整数,MM(背包容量,M<=200M<=200)和NN(物品数量,N<=30N<=30): 第2-N+12-N+1行:每行二个整数Wi,CiWi,Ci,表示每个物品的重量和价值. [输出] 仅一行,一个数,表示最大总价值. [输入

  • Java 数据结构与算法系列精讲之背包问题

    概述 从今天开始, 小白我将带大家开启 Java 数据结构 & 算法的新篇章. 动态规划 动态规划 (Dynamic Programming) 的核心思想是把大问题划分为小问题进行解决. 先求解子问题, 然后从这些子问题的解得到原问题的解. 动态规划的优点: 可以帮助我们解决多阶段问题, 化繁为简 动态规划的缺点: 没有统一的处理方法, 具体问题具体分析 当变量的维数增大时, 计算和存储会急剧增大 背包问题 背包问题 (Knapsack Problem) 指有 N 件物品和一个容量为 V 的背包

  • Java 数据结构与算法系列精讲之贪心算法

    概述 从今天开始, 小白我将带大家开启 Java 数据结构 & 算法的新篇章. 贪心算法 贪心算法 (Greedy Algorithm) 指的是在每一步选择中都采取在当前状态下最好或最优的选择, 从而希望导致结果是最好或最优的算法. 贪心算法锁得到的结果不一定是最优的结果, 但是都是相对近似最优的结果. 贪心算法的优缺点: 优点: 贪心算法的代码十分简单 缺点: 很难确定一个问题是否可以用贪心算法解决 电台覆盖问题 假设存在以下的广播台, 以及广播台可以覆盖的地区: 广播台 覆盖地区 K1 北京

  • Java 数据结构与算法系列精讲之排序算法

    概述 从今天开始, 小白我将带大家开启 Java 数据结构 & 算法的新篇章. 冒泡排序 冒泡排序 (Bubble Sort) 是一种简单的排序算法. 它重复地遍历要排序的数列, 一次比较两个元素, 如果他们的顺序错误就把他们交换过来. 遍历数列的工作是重复地进行直到没有再需要交换, 也就是说该数列已经排序完成. 这个算法的名字由来是因为越小的元素会经由交换慢慢 "浮" 到数列的顶端. 冒泡排序流程: 通过比较相邻的元素, 判断两个元素位置是否需要互换 进行 n-1 次比较,

  • Java 数据结构与算法系列精讲之KMP算法

    概述 从今天开始, 小白我将带大家开启 Java 数据结构 & 算法的新篇章. KMP 算法 KMP (Knuth-Morris-Pratt), 是一种改进的字符串匹配算法. KMP 算法解决了暴力匹配需要高频回退的问题, KMP 算法在匹配上若干字符后, 字符串位置不需要回退, 从而大大提高效率. 如图: 举个例子 (字符串 "abcabcdef" 匹配字符串 "abcdef"): 次数 暴力匹配 KMP 算法 说明 1 abcabcdef abcdef

  • Java 数据结构与算法系列精讲之字符串暴力匹配

    概述 从今天开始, 小白我将带大家开启 Java 数据结构 & 算法的新篇章. 字符串匹配 字符串匹配 (String Matching) 指的是判断一个字符串是否包含另一个字符串. 举个例子: 字符串 "Hello World" 包含字符串 "Hello" 字符串 "Hello World" 不包含字符串 "LaLaLa" 暴力匹配 暴力匹配 (Brute-Force) 的思路: 如果charArray1[i] ==

  • Java 数据结构与算法系列精讲之单向链表

    目录 概述 链表 单向链表 单向链表实现 Node类 add方法 remove方法 get方法 set方法 contain方法 main 完整代码 概述 从今天开始, 小白我将带大家开启 Jave 数据结构 & 算法的新篇章. 链表 链表 (Linked List) 是一种递归的动态数据结构. 链表以线性表的形式, 在每一个节点存放下一个节点的指针. 链表解决了数组需要先知道数据大小的缺点, 增加了节点的指针域, 空间开销较大. 链表包括三类: 单向链表 双向链表 循环链表 单向链表 单向链表

  • Java 数据结构与算法系列精讲之环形链表

    目录 概述 链表 环形链表 环形链表实现 Node类 insert方法 remove方法 main 完整代码 概述 从今天开始, 小白我将带大家开启 Java 数据结构 & 算法的新篇章. 链表 链表 (Linked List) 是一种递归的动态数据结构. 链表以线性表的形式, 在每一个节点存放下一个节点的指针. 链表解决了数组需要先知道数据大小的缺点, 增加了节点的指针域, 空间开销较大. 链表包括三类: 单向链表 双向链表 循环链表 环形链表 环形链表 (Circular Linked Li

  • Java 数据结构与算法系列精讲之栈

    目录 概述 栈 栈实现 push方法 pop方法 main 完整代码 概述 从今天开始, 小白我将带大家开启 Jave 数据结构 & 算法的新篇章. 栈 栈 (Stack) 是一种运算受限的线性表, 遵循先进后出的原则 (Last-In-First-Out). 举个例子, 当我们灌调料的时候, 后灌进去的调料会先被使用. 栈只能在表尾部进行插入和删除的操作. 开口的一端被称为栈顶, 另一端则被称为栈底. 如图: 栈实现 push 方法 栈 (Stack) 的 push 方法, 把项压入栈顶部.

  • Java 数据结构与算法系列精讲之数组

    目录 概述 数组 声明数组的两个方法 创建数组的两个方法 索引 自定义数组 泛型 构造函数 元素操作 调用 完整代码 概述 从今天开始, 小白我将带大家开启 Jave 数据结构 & 算法的新篇章. 数组 数组 (Array) 是有序数据的集合, 在 Java 中 java.util.Arrays包含用来操作数组的各种方法, 比如排序和搜索等. 其所有方法均为静态方法, 调用起来非常简单. 声明数组的两个方法 方法一: 数据类型[] array; 方法二: 数据类型 array[]; 创建数组的两

  • Java 数据结构与算法系列精讲之二叉堆

    目录 概述 优先队列 二叉堆 二叉堆实现 获取索引 添加元素 siftUp 完整代码 概述 从今天开始, 小白我将带大家开启 Java 数据结构 & 算法的新篇章. 优先队列 优先队列 (Priority Queue) 和队列一样, 是一种先进先出的数据结构. 优先队列中的每个元素有各自的优先级, 优先级最高的元素最先得到服务. 如图: 二叉堆 二叉堆 (Binary Heap) 是一种特殊的堆, 二叉堆具有堆的性质和二叉树的性质. 二叉堆中的任意一节点的值总是大于等于其孩子节点值. 如图: 二

随机推荐