详解Java的内存模型

JVM的内存模型

Java “一次运行,到处编译” 的真面目

说JVM内存模型之前,先聊一个老生常谈的问题,为什么Java可以 “一次编译,到处运行”,这个话题最直接的答案就是,因为Java有JVM啊,解释这个答案之前,我想先回顾一下一个语言被编译的过程:

一般编程语言的编译过程大抵就是,编译——连接——执行,这里的编译就是,把我们写的源代码,根据语义语法进行翻译,形成目标代码,即汇编码。再由汇编程序翻译成机器语言(可以理解为直接运行于硬件上的01语言);然后进行连接,所谓连接就是将目标代码与函数库相连接,并将源程序所用的库代码与目标代码合并,并形成最终可执行的二进制机器代码(程序)。

编译运行的整个流程,有一个前提,那就是到汇编的层面,指令编码就和处理器的架构强关联了,说白点就是和硬件关联了,可以粗暴的理解为,一类硬件机器只认识一种汇编,一种机器只认一种机器码。在这个基础下,很容易就会发现一个问题,一个编程语言经过编译、连接形成的可运行的机器码X,可以在硬件环境1的情况下运行,当机器码X到硬件环境2,就未必可以运行了,或者说运行结果就不是硬件环境1的结果了,所以,同一个程序,换台PC,我们就可能需要重新编译、打包成可运行在当前硬件环境的程序。这样在工程化运用中真的是灾难。

现在我们回到开篇问题的答案,之所以Java可以“一次编译,到处运行”,是因为有JVM,为了便于理解,我们可以这样认为:JVM就是一个完备的中间环境,它提供编译运行Java字节码的全套环境,换句话说,它就像一个小隔离空间,我的Java程序只要编译一次,只要满足可以跑在JVM中,那它就可以随便移植在任何硬件环境中,所以Java的“一次编译,到处运行”的本质就是,它处处都要依赖JVM,它其实就是一个运行在JVM中的寄生虫,这也是为什么想要运行环境,你就必须要装JDK的原因。

JVM的本质和位置

上面的理解只不过是为了更快的入戏,但是上面的理解过于粗暴,下面细腻一下JVM的性质以及它所处的位置:

通常工作中所接触的基本是Java库和应用以及Java核心类库,知道如何使用就可以了,但是归根结底代码都是要编译成class文件由Java虚拟机装载执行,所产生的结果或者现象都可以通过Java虚拟机的运行机制来解释。一些相同的代码会由于虚拟机的实现不同而产生不同结果。

然后是我们要介绍的JVM,首先我们要明确一个概念,JVM它并不是某一个具体的产品,也不是一个成品的软件,更准确地说JVM是一种理论规范,对JVM的具体实现要么是软件,要么是软件和硬件的组合,JVM可以由不同的厂商来实现成不同的产品。由于厂商的不同必然导致JVM在实现上的一些不同,像国内就有著名的TaobaoVM;

在Java平台的结构中,可以看出,Java虚拟机(JVM)处在核心的位置,是程序与底层操作系统和硬件无关的关键。它的下方是移植接口,移植接口由两部分组成:适配器和Java操作系统,其中依赖于平台的部分称为适配器;JVM通过移植接口在具体的平台和操作系统上实现;在JVM的上方是Java的基本类库和扩展类库以及它们的API, 利用Java API编写的应用程序(application)和小程序(Java applet)可以在任何Java平台上运行而无需考虑底层平台,就是因为有Java虚拟机(JVM)实现了程序与操作系统的分离,从而实现了Java的平台无关性。

JVM在它的生存周期中有一个明确的任务,那就是装载字节码文件,一旦字节码进入虚拟机,它就会被解释器解释执行,或者是被即时代码发生器有选择的转换成机器码执行,即Java程序被执行。因此当Java程序启动的时候,就产生JVM的一个实例;当程序运行结束的时候,该实例也跟着消失了。

JVM的内存模型总览

总体来讲,JVM会将Java进程所管理的内存划分为若干不同的数据区域. 这些区域有各自的用途、创建/销毁时间。以上这张图,就是Java的编译运行过程,上半部分(运行时区域)其实就是JVM的内存分配,它把从操作系统获取来的内存空间进行了独立的划分,分别为方法区、堆、虚拟机栈、本地方法栈、程序计数器。下半部分就是连接——运行阶段的,JVM将Java语言处理完毕,变成适配与当前机器的机器码,然后与本地库进行连接,运行。

线程私有区域

线程私有数据区域生命周期与线程相同, 依赖用户线程的启动/结束而创建/销毁(在Hotspot VM内, 每个线程都与操作系统的本地线程直接映射, 因此这部分内存区域的存/否跟随本地线程的生/死)。

程序计数器

一块较小的内存空间, 作用是当前线程所执行字节码的行号指示器(类似于传统CPU模型中的PC), PC在每次指令执行后自增, 维护下一个将要执行指令的地址. 在JVM模型中, 字节码解释器就是通过改变PC值来选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖PC完成(仅限于Java方法, Native方法该计数器值为undefined).
不同于OS以进程为单位调度, JVM中的并发是通过线程切换并分配时间片执行来实现的. 在任何一个时刻, 一个处理器内核只会执行一条线程中的指令. 因此, 为了线程切换后能恢复到正确的执行位置, 每条线程都需要有一个独立的程序计数器, 这类内存被称为“线程私有”内存。

JAVA代码编译后的字节码在未经过JIT(实时编译器)编译前,其执行方式是通过“字节码解释器”进行解释执行。简单的工作原理为解释器读取装载入内存的字节码,按照顺序读取字节码指令。读取一个指令后,将该指令“翻译”成固定的操作,并根据这些操作进行分支、循环、跳转等流程。

从上面的描述中,可能会产生程序计数器是否是多余的疑问。因为沿着指令的顺序执行下去,即使是分支跳转这样的流程,跳转到指定的指令处按顺序继续执行是完全能够保证程序的执行顺序的。假设程序永远只有一个线程,这个疑问没有任何问题,也就是说并不需要程序计数器。但实际上程序是通过多个线程协同合作执行的。

首先我们要搞清楚JVM的多线程实现方式。JVM的多线程是通过CPU时间片轮转(即线程轮流切换并分配处理器执行时间)算法来实现的。也就是说,某个线程在执行过程中可能会因为时间片耗尽而被挂起,而另一个线程获取到时间片开始执行。当被挂起的线程重新获取到时间片的时候,它要想从被挂起的地方继续执行,就必须知道它上次执行到哪个位置,在JVM中,通过程序计数器来记录某个线程的字节码执行位置。因此,程序计数器是具备线程隔离的特性,也就是说,每个线程工作时都有属于自己的独立计数器。

程序计数器的特点

1.线程隔离性,每个线程工作时都有属于自己的独立计数器。

2.执行java方法时,程序计数器是有值的,且记录的是正在执行的字节码指令的地址(参考上一小节的描述)。

3.执行native本地方法时,程序计数器的值为空(Undefined)。因为native方法是java通过JNI直接调用本地C/C++库,可以近似的认为native方法相当于C/C++暴露给java的一个接口,java通过调用这个接口从而调用到C/C++方法。由于该方法是通过C/C++而不是java进行实现。那么自然无法产生相应的字节码,并且C/C++执行时的内存分配是由自己语言决定的,而不是由JVM决定的。

4.程序计数器占用内存很小,在进行JVM内存计算时,可以忽略不计。

5.程序计数器,是唯一一个在java虚拟机规范中没有规定任何OutOfMemoryError的区域。

虚拟机栈

这里的虚拟机栈主要是针对Java的方法执行,我们都知道方法在编程中使用的是栈的数据结构;每个方法被执行时会创建一个栈帧(Stack Frame)用于存储局部变量表、操作数栈、动态链接、方法出口等信息. 每个方法被调用至返回的过程, 就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程(VM提供了-Xss来指定线程的最大栈空间, 该参数也直接决定了函数调用的最大深度)。这里特别说明一下局部变量表,这里的局部变量表,其实就是我们定义的方法内部的变量,它基本的范围包括基本数据类型(如boolean、int、double等) 、对象引用(reference : 不等同于对象本身, 可能是一个指向对象起始地址的指针, 也可能指向一个代表对象的句柄或其他与此对象相关的位置),也就是我们私下常说的‘堆栈'中的‘栈'。

Java虚拟机使用局部变量表来完成方法调用时的参数传递。局部变量表的长度在编译期已经决定了并存储于类和接口的二进制表示中,一个局部变量可以保存一个类型为boolean、byte、char、short、float、reference和returnAddress的数据,两个局部变量可以保存一个类型为long和double的数据。

Java虚拟机提供一些字节码指令来从局部变量表或者对象实例的字段中复制常量或变量值到操作数栈中,也提供了一些指令用于从操作数栈取走数据、操作数据和把操作结果重新入栈。在方法调用的时候,操作数栈也用来准备调用方法的参数以及接收方法返回结果。

每个栈帧中都包含一个指向运行时常量区的引用支持当前方法的动态链接。在Class文件中,方法调用和访问成员变量都是通过符号引用来表示的,动态链接的作用就是将符号引用转化为实际方法的直接引用或者访问变量的运行是内存位置的正确偏移量。

总的来说,Java虚拟机栈是用来存放局部变量和过程结果的地方。
Java虚拟机栈可能发生如下异常情况: 如果Java虚拟机栈被实现为固定大小内存,线程请求分配的栈容量超过Java虚拟机栈允许的最大容量时,Java虚拟机将会抛出一个StackOverflowError异常。
如果Java虚拟机栈被实现为动态扩展内存大小,并且扩展的动作已经尝试过,但是目前无法申请到足够的内存去完成扩展,或者在建立新的线程时没有足够的内存去创建对应的虚拟机栈,那Java虚拟机将会抛出一个OutOfMemoryError异常。

1.符号引用(Symbolic References):

符号引用以一组符号来描述所引用的目标,符号可以是任何形式的字面量,只要使用时能够无歧义的定位到目标即可。例如,在Class文件中它以CONSTANT_Class_info、CONSTANT_Fieldref_info、CONSTANT_Methodref_info等类型的常量出现。符号引用与虚拟机的内存布局无关,引用的目标并不一定加载到内存中。在Java中,一个java类将会编译成一个class文件。在编译时,java类并不知道所引用的类的实际地址,因此只能使用符号引用来代替。比如org.simple.People类引用了org.simple.Language类,在编译时People类并不知道Language类的实际内存地址,因此只能使用符号org.simple.Language(假设是这个,当然实际中是由类似于CONSTANT_Class_info的常量来表示的)来表示Language类的地址。各种虚拟机实现的内存布局可能有所不同,但是它们能接受的符号引用都是一致的,因为符号引用的字面量形式明确定义在Java虚拟机规范的Class文件格式中。

2.直接引用:

直接引用可以是

(1)直接指向目标的指针(比如,指向“类型”【Class对象】、类变量、类方法的直接引用可能是指向方法区的指针)

(2)相对偏移量(比如,指向实例变量、实例方法的直接引用都是偏移量)

(3)一个能间接定位到目标的句柄

直接引用是和虚拟机的布局相关的,同一个符号引用在不同的虚拟机实例上翻译出来的直接引用一般不会相同。如果有了直接引用,那引用的目标必定已经被加载入内存中了。

本地方法栈

本地方法栈其实作用和虚拟机栈的作用一样,不同的是,虚拟机栈是为虚拟机解析运行Java方法,而本地方法栈是为虚拟机调用Native方法服务(Native方法简单点来说就是一个java调用非java代码的接口。一个Native 方法是这样一个java的方法:该方法的实现由非java语言实现)

线程共享区域

这一区域的生命周期,同虚拟机一致,也就是虚拟机内部的公共内存区域,随虚拟机的启动/关闭而创建/销毁

堆区

这里的堆,是虚拟机从操作系统那里申请来的的内存空间,这块空间是Java虚拟机所管理的内存中最大的一块,并且是所有线程共享的一块内存区域,Java堆在虚拟机启动的时候被创建,主要用来为类实例对象和数组分配内存。这块区域可以处于物理上不连续的内存空间中,只要逻辑上是连续的即可,就像我们的磁盘空间一样,在实现时,既可以实现成固定大小的,也可以是扩展的,如果是可扩展的,则通过(-Xmx和-Xms控制),如果在队中没有内存完成实例分配,并且堆也无法再扩展时,将会抛出OutOfMemoryError异常。

Java堆是垃圾回收器管理的主要区域,很多时候也被称为“GC”堆,在现在的实现上,堆被划分成两个不同的区域:新生代( Young )、老年代( Old );这也就是JVM采用的“分代收集算法”,简单说,就是针对不同特征的java对象采用不同的 策略实施存放和回收,自然所用分配机制和回收算法就不一样。新生代( Young ) 又被划分为三个区域:Eden、From Survivor、To Survivor。

方法区

方法区和Java堆一样,是各个线程共享的内存区域,用于存储已被虚拟机加载的类信息,常量、静态变量,还包括在类、实例、接口初始化时用到的特殊方法。虚拟机规范上把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫做“非堆”,目的就是与Java的堆区分开来。

直接内存

直接内存并不是JVM运行时数据区的一部分, 但也会被频繁的使用: 在JDK 1.4引入的NIO提供了基于Channel与Buffer的IO方式, 它可以使用Native函数库直接分配堆外内存, 然后使用DirectByteBuffer对象作为这块内存的引用进行操作(详见: Java I/O 扩展), 这样就避免了在Java堆和Native堆中来回复制数据, 因此在一些场景中可以显著提高性能。
显然, 本机直接内存的分配不会受到Java堆大小的限制(即不会遵守-Xms、-Xmx等设置), 但既然是内存, 则肯定还是会受到本机总内存大小及处理器寻址空间的限制, 因此动态扩展时也会出现OutOfMemoryError异常。

从例子来理解内存模型

这里我们引入一个比较简单的程序样例,从具体的代码角度去理解Jvm的内存

一个person类

public class Persion {
    private String name;
    public static String aninmal = "dog" 

     public Persion(String name){
        this.name = name
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

}

一个App类

public class App
{
    public static void main( String[] args )
    {
        Persion persion1 = new Persion("张三");
        Persion persion2 = new Persion("李四");
        persoion1.setName("王五");
     }
}

程序开始运行,系统启动了一个Java虚拟机进程,Java虚拟机定位到方法区中App类的main()方法的字节码,开始执行它的指令。分别去创建Persion1和Persion2(这里我们以persion对象为跟踪点)

1、程序从main方法开始执行,既然提到了方法,根据上面的知识,我们知道,它首先会在栈区动工。在JAVA虚拟机进程中,每个线程都会拥有一个方法调用栈,用来跟踪线程运行中一系列的方法调用过程,栈中的每一个元素就被称为栈帧,每当线程调用一个方法的时候就会向方法栈压入一个新帧。这里的帧用来存储方法的参数、局部变量和运算过程中的临时数据。这时候执行main方法的主线程会在栈区申请一片区域。根据源码,它会识别出persion1和persion2分别为两个变量,并且给它们定性是方法内局部变量,因此,它被会添加到了执行main()方法的主线程的JAVA方法调用栈中。

2、 接下来就是 “=” 赋值操作了,Java虚拟机接受运行指令,发现右侧是个对象实例,于是就直奔方法区而去,试图找到Persion类的类型信息。首次运行,发现并没有找到Persion的信息,这时候Java虚拟机根据预设的规则,在无法找到类信息的情况下,自行去加载Persion类,把Persion类的类型信息存放在方法区里。

3、 现在Persion类的信息已经被加载到了方法区,这里Persion类中的静态变量animal也会被填充上值“dog”存放于方法区,此时Java虚拟机根据我们代码中的两句new指令,分别去堆中划出两块内存区域,分别用于存放persion实例1和persion实例2,这两个实例对象分别拥有自己独立的内存空间, 同时这俩实例持有着指向方法区的Persion类的类型信息的引用。这里所说的引用,实际上指的是Persion类的类型信息在方法区中的内存地址,其实,就是有点类似于C语言里的指针,而这个地址呢,就存放了在persion实例1、persopn实例2的数据区里。我们也能发现persion实例1和persion实例2共享animal这个变量,也就是说,无论使用哪一个引用(persion1和persion2)去修改这个animal变量,任何一个Persion对象使用这个变量的时候,都会发生改变。

4、到此为止已经将main方法中的两个成员变量persion1和persion2分别关联到了堆中的对象。当Java虚拟机执行到persion1.setName()的时候,Java虚拟机根据main方法栈区中的persion1变量,定位到堆中的Persion名字为张三的实例(persion实例1),再根据这个实例所持有的类信息引用(或者说指针),定位到方法区的Persion类信息,从中获得setName(String name)方法,然后栈区再压入一个新帧,并在其中完成参数(String name)的复制,然后根据指令,将堆中的Persion实例1 空间中的Name变成“王五”,然后结束

以上就是详解Java的内存模型的详细内容,更多关于Java的内存模型的资料请关注我们其它相关文章!

(0)

相关推荐

  • Java内存模型相关知识总结

    [1]CPU和缓存的一致性 我们应该都知道,计算机在执行程序的时候,每条指令都是在CPU中执行的,而执行的时候,又免不了要和数据打交道.而计算机上面的数据,是存放在主存当中的,也就是计算机的物理内存啦. ​ 刚开始,还相安无事的,但是随着CPU技术的发展,CPU的执行速度越来越快.而由于内存的技术并没有太大的变化,所以从内存中读取和写入数据的过程和CPU的执行速度比起来差距就会越来越大,这就导致CPU每次操作内存都要耗费很多等待时间. ​ 所以,人们想出来了一个好的办法,就是在CPU和内存之间增

  • 浅析Java内存模型与垃圾回收

    1.Java内存模型 Java虚拟机在执行程序时把它管理的内存分为若干数据区域,这些数据区域分布情况如下图所示: 程序计数器:一块较小内存区域,指向当前所执行的字节码.如果线程正在执行一个Java方法,这个计数器记录正在执行的虚拟机字节码指令的地址,如果执行的是Native方法,这个计算器值为空. Java虚拟机栈:线程私有的,其生命周期和线程一致,每个方法执行时都会创建一个栈帧用于存储局部变量表.操作数栈.动态链接.方法出口等信息. 本地方法栈:与虚拟机栈功能类似,只不过虚拟机栈为虚拟机执行J

  • Java内存模型与JVM运行时数据区的区别详解

    首先,这两者是完全不同的概念,绝对不能混为一谈. 1.什么是Java内存模型? Java内存模型是Java语言在多线程并发情况下对于共享变量读写(实际是共享变量对应的内存操作)的规范,主要是为了解决多线程可见性.原子性的问题,解决共享变量的多线程操作冲突问题. 多线程编程的普遍问题是: 所见非所得 无法肉眼检测程序的准确性 不同的运行平台表现不同 错误很难复现 故JVM规范规定了Java虚拟机对多线程内存操作的一些规则,主要集中体现在volatile和synchronized这两个关键字. vo

  • Java内存模型中的虚拟机栈原理分析

    Java虚拟机在执行Java程序的过程中会把它所管理的内存划分为若干个不同的数据区域,这些区域都会有各自的用途,以及创建和销毁的时间,有的区域会随着虚拟机进程的启动而存在,有些区域则依赖用户线程的启动和结束而建立和销毁.Java虚拟机所管理的内存将会包括以下几个运行时数据区域.如下图所示(图片来自<深入理解Java虚拟机>一书). 在内存中,栈分为两部分,一部分是本地方法栈,为虚拟机使用到的Native方法服务,具体的虚拟机可以自由实现,另一部分就是虚拟机栈,主要是为虚拟机执行Java方法服务

  • Java内存模型JMM详解

    Java Memory Model简称JMM, 是一系列的Java虚拟机平台对开发者提供的多线程环境下的内存可见性.是否可以重排序等问题的无关具体平台的统一的保证.(可能在术语上与Java运行时内存分布有歧义,后者指堆.方法区.线程栈等内存区域). 并发编程有多种风格,除了CSP(通信顺序进程).Actor等模型外,大家最熟悉的应该是基于线程和锁的共享内存模型了.在多线程编程中,需要注意三类并发问题: ·原子性 ·可见性 ·重排序 原子性涉及到,一个线程执行一个复合操作的时候,其他线程是否能够看

  • Java 高并发三:Java内存模型和线程安全详解

    网上很多资料在描述Java内存模型的时候,都会介绍有一个主存,然后每个工作线程有自己的工作内存.数据在主存中会有一份,在工作内存中也有一份.工作内存和主存之间会有各种原子操作去进行同步. 下图来源于这篇Blog 但是由于Java版本的不断演变,内存模型也进行了改变.本文只讲述Java内存模型的一些特性,无论是新的内存模型还是旧的内存模型,在明白了这些特性以后,看起来也会更加清晰. 1. 原子性 原子性是指一个操作是不可中断的.即使是在多个线程一起执行的时候,一个操作一旦开始,就不会被其它线程干扰

  • 浅谈Java并发中的内存模型

    什么是JavaMemoryModel(JMM)? JMM通过构建一个统一的内存模型来屏蔽掉不同硬件平台和不同操作系统之间的差异,让Java开发者无需关注不同平台之间的差异,达到一次编译,随处运行的目的,这也正是Java的设计目的之一. CPU和内存 在讲JMM之前,我想先和大家聊聊硬件层面的东西.大家应该都知道执行运算操作的CPU本身是不具备存储能力的,它只负责根据指令对传递进来的数据做相应的运算,而数据存储这一任务则交给内存去完成.虽然内存的运行速度虽然比起硬盘快非常多,但是和3GHZ,4GH

  • 浅谈Java内存模型之happens-before

    happens-before原则非常重要,它是判断数据是否存在竞争.线程是否安全的主要依据,依靠这个原则,我们解决在并发环境下两操作之间是否可能存在冲突的所有问题.下面我们就一个简单的例子稍微了解下happens-before : i = 1;       //线程A执行 j = i ;      //线程B执行 j 是否等于1呢?假定线程A的操作(i = 1)happens-before线程B的操作(j = i),那么可以确定线程B执行后j = 1 一定成立,如果他们不存在happens-be

  • Java内存区域和内存模型讲解

    一.Java内存区域 方法区(公有):用户存储已被虚拟机加载的类信息,常量,静态常量,即时编译器编译后的代码等数据.异常状态 OutOfMemoryError. 堆(公有):是JVM所管理的内存中最大的一块.唯一目的就是存放实例对象,几乎所有的对象实例都在这里分配.Java堆是垃圾收集器管理的主要区域,因此很多时候也被称为"GC堆".异常状态 OutOfMemoryError. 虚拟机栈(线程私有): 描述的是java方法执行的内存模型:每个方法在执行时都会创建一个栈帧,用户存储局部变

  • 详解Java的内存模型

    JVM的内存模型 Java "一次运行,到处编译" 的真面目 说JVM内存模型之前,先聊一个老生常谈的问题,为什么Java可以 "一次编译,到处运行",这个话题最直接的答案就是,因为Java有JVM啊,解释这个答案之前,我想先回顾一下一个语言被编译的过程: 一般编程语言的编译过程大抵就是,编译--连接--执行,这里的编译就是,把我们写的源代码,根据语义语法进行翻译,形成目标代码,即汇编码.再由汇编程序翻译成机器语言(可以理解为直接运行于硬件上的01语言):然后进行连

  • 详解Java volatile 内存屏障底层原理语义

    目录 一.volatile关键字介绍及底层原理 1.volatile的特性(内存语义) 2.volatile底层原理 二.volatile--可见性 三.volatile--无法保证原子性 四.volatile--禁止指令重排 1.指令重排 2.as-if-serial语义 五.volatile与内存屏障(Memory Barrier) 1.内存屏障(Memory Barrier) 2.volatile的内存语义实现 六.JMM对volatile的特殊规则定义 一.volatile关键字介绍及底

  • 详解Java虚拟机管理的内存运行时数据区域

    详解Java虚拟机管理的内存运行时数据区域 概述 Java虚拟机在执行Java程序的过程中会把它所管理的内存划分为若干个不同数据区域.这些区域都有各自的用途,以及创建和销毁的时间,有的区域随着虚拟机进程的启动而存在,有些区域则是依赖用户线程的启动和结束而建立和销毁. 程序计数器 程序计数器是一块较小的内存空间,它可以看作是当前线程所执行的字节码的行号指示器.在虚拟机的概念模型里,字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支,循环,跳转,异常处理,线程恢复等基

  • 详解Java内存溢出的几种情况

    JVM(Java虚拟机)是一个抽象的计算模型.就如同一台真实的机器,它有自己的指令集和执行引擎,可以在运行时操控内存区域.目的是为构建在其上运行的应用程序提供一个运行环境.JVM可以解读指令代码并与底层进行交互:包括操作系统平台和执行指令并管理资源的硬件体系结构. 1. 前言 JVM提供的内存管理机制和自动垃圾回收极大的解放了用户对于内存的管理,大部分情况下不会出现内存泄漏和内存溢出问题.但是基本不会出现并不等于不会出现,所以掌握Java内存模型原理和学会分析出现的内存溢出或内存泄漏,对于使用J

  • 详解Java的堆内存与栈内存的存储机制

    堆与内存优化     今天测了一个项目的数据自动整理功能,对数据库中几万条记录及图片进行整理操作,运行接近到最后,爆出了java.lang.outOfMemoryError,java heap space方面的错误,以前写程序很少遇到这种内存上的错误,因为java有垃圾回收器机制,就一直没太关注.今天上网找了点资料,在此基础上做了个整理.  一.堆和栈 堆-用new建立,垃圾回收器负责回收 1.程序开始运行时,JVM从OS获取一些内存,部分是堆内存.堆内存通常在存储地址的底层,向上排列. 2.堆

  • 详解JAVA 内存管理

    前一段时间粗略看了一下<深入Java虚拟机 第二版>,可能是因为工作才一年的原因吧,看着十分的吃力.毕竟如果具体到细节的话,Java虚拟机涉及的内容太多了.可能再过一两年去看会合适一些吧. 不过看了一遍<深入Java虚拟机>再来理解Java内存管理会好很多.接下来一起学习下Java内存管理吧. 请注意上图的这个: 我们再来复习下进程与线程吧: 进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位. 线程是进程的一个实体,是CPU调

  • 详解Java中的线程模型与线程调度

    JAVA线程模型 线程的实现主要有3种方式: 使用内核线程实现(1:1) 使用用户线程实现(1:N) 使用用户线程加轻量级进程实现(N:M) 使用内核线程实现(Kernel-Level Thread, KLT)(1:1) 内核线程就是直接由操作系统内核支持的线程,这种线程由内核来完成线程的切换,内核通过操作调度器对线程进行调度,并负责将线程的任务映射到各个处理器上. 程序一般不会直接去使用内核,而是去使用线程的一种高级接口--轻量级进程(Light Weight Process,LWP),轻量级

  • 详解Java中一维、二维数组在内存中的结构

    前言 我们知道在Java中数组属于引用数据类型,它整个数组的数组元素既可以是基本数据类型的(如 byte \ int \ short \ long \ float \ double \ char \ boolean 这些),也可以是引用数据类型的.当它的数组元素是基本数据类型时,这个数组就是一个一维数组:当它的数组元素是引用数据类型时,它就是一个多维数组.比如,在一个数组中它的某个元素值其实是一个一维数组,而其他不同的元素也各自包含了一个一维数组,我们就把这个包含很多个一维数组的数组叫做二维数组

  • 详解Java对象的内存布局

    前言 今天来讲些抽象的东西 -- 对象头,因为我在学习的过程中发现很多地方都关联到了对象头的知识点,例如JDK中的 synchronized锁优化 和 JVM 中对象年龄升级等等.要深入理解这些知识的原理,了解对象头的概念很有必要,而且可以为后面分享 synchronized 原理和 JVM 知识的时候做准备. 对象内存构成 Java 中通过 new 关键字创建一个类的实例对象,对象存于内存的堆中并给其分配一个内存地址,那么是否想过如下这些问题: 这个实例对象是以怎样的形态存在内存中的? 一个O

  • 详解Java对象创建的过程及内存布局

    一.对象的内存布局 对象头 对象头主要保存对象自身的运行时数据和用于指定该对象属于哪个类的类型指针. 实例数据 保存对象的有效数据,例如对象的字段信息,其中包括从父类继承下来的. 对齐填充 对齐填充不是必须存在的,没有特别的含义,只起到一个占位符的作用. 二.对象的创建过程 实例化一个类的对象的过程是一个典型的递归过程. 在准备实例化一个类的对象前,首先准备实例化该类的父类,如果该类的父类还有父类,那么准备实例化该类的父类的父类,依次递归直到递归到Object类. 此时,首先实例化Object类

随机推荐