Python实战之MNIST手写数字识别详解

目录
  • 数据集介绍
  • 1.数据预处理
  • 2.网络搭建
  • 3.网络配置
    • 关于优化器
    • 关于损失函数
    • 关于指标
  • 4.网络训练与测试
  • 5.绘制loss和accuracy随着epochs的变化图
  • 6.完整代码

数据集介绍

MNIST数据集是机器学习领域中非常经典的一个数据集,由60000个训练样本和10000个测试样本组成,每个样本都是一张28 * 28像素的灰度手写数字图片,且内置于keras。本文采用Tensorflow下Keras(Keras中文文档)神经网络API进行网络搭建。

开始之前,先回忆下机器学习的通用工作流程( √表示本文用到,×表示本文没有用到 )

1.定义问题,收集数据集(√)

2.选择衡量成功的指标(√)

3.确定评估的方法(√)

4.准备数据(√)

5.开发比基准更好的模型(×)

6.扩大模型规模(×)

7.模型正则化与调节参数(×)

关于最后一层激活函数与损失函数的选择

下面开始正文~

1.数据预处理

首先导入数据,要使用mnist.load()函数

我们来看看它的源码声明:

def load_data(path='mnist.npz'):
  """Loads the [MNIST dataset](http://yann.lecun.com/exdb/mnist/).

  This is a dataset of 60,000 28x28 grayscale images of the 10 digits,
  along with a test set of 10,000 images.
  More info can be found at the
  [MNIST homepage](http://yann.lecun.com/exdb/mnist/).

  Arguments:
      path: path where to cache the dataset locally
          (relative to `~/.keras/datasets`).

  Returns:
      Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`.
      **x_train, x_test**: uint8 arrays of grayscale image data with shapes
        (num_samples, 28, 28).

      **y_train, y_test**: uint8 arrays of digit labels (integers in range 0-9)
        with shapes (num_samples,).
  """

可以看到,里面包含了数据集的下载链接,以及数据集规模、尺寸以及数据类型的声明,且函数返回的是四个numpy array组成的两个元组。

导入数据集并reshape至想要形状,再标准化处理。

其中内置于keras的to_categorical()就是one-hot编码——将每个标签表示为全零向量,只有标签索引对应的元素为1.

eg: col=10

[0,1,9]-------->[ [1,0,0,0,0,0,0,0,0,0],
                  [0,1,0,0,0,0,0,0,0,0],
                  [0,0,0,0,0,0,0,0,0,1] ]

我们可以手动实现它:

def one_hot(sequences,col):
        resuts=np.zeros((len(sequences),col))
        # for i,sequence in enumerate(sequences):
        #         resuts[i,sequence]=1
        for i in range(len(sequences)):
                for j in range(len(sequences[i])):
                        resuts[i,sequences[i][j]]=1
        return resuts

下面是预处理过程

def data_preprocess():
    (train_images, train_labels), (test_images, test_labels) = mnist.load_data()
    train_images = train_images.reshape((60000, 28, 28, 1))
    train_images = train_images.astype('float32') / 255
    #print(train_images[0])
    test_images = test_images.reshape((10000, 28, 28, 1))
    test_images = test_images.astype('float32') / 255

    train_labels = to_categorical(train_labels)
    test_labels = to_categorical(test_labels)
    return train_images,train_labels,test_images,test_labels

2.网络搭建

这里我们搭建的是卷积神经网络,就是包含一些卷积、池化、全连接的简单线性堆积。我们知道多个线性层堆叠实现的仍然是线性运算,添加层数并不会扩展假设空间(从输入数据到输出数据的所有可能的线性变换集合),因此需要添加非线性或激活函数。relu是最常用的激活函数,也可以用prelu、elu

def build_module():
    model = models.Sequential()
    #第一层卷积层,首层需要指出input_shape形状
    model.add(layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)))
    #第二层最大池化层
    model.add(layers.MaxPooling2D((2,2)))
    #第三层卷积层
    model.add(layers.Conv2D(64, (3,3), activation='relu'))
    #第四层最大池化层
    model.add(layers.MaxPooling2D((2,2)))
    #第五层卷积层
    model.add(layers.Conv2D(64, (3,3), activation='relu'))
    #第六层Flatten层,将3D张量平铺为向量
    model.add(layers.Flatten())
    #第七层全连接层
    model.add(layers.Dense(64, activation='relu'))
    #第八层softmax层,进行分类
    model.add(layers.Dense(10, activation='softmax'))
    return model

使用model.summary()查看搭建的网路结构:

3.网络配置

网络搭建好之后还需要关键的一步设置配置。比如:优化器——网络梯度下降进行参数更新的具体方法、损失函数——衡量生成值与目标值之间的距离、评估指标等。配置这些可以通过 model.compile() 参数传递做到。

我们来看看model.compile()的源码分析下:

  def compile(self,
              optimizer='rmsprop',
              loss=None,
              metrics=None,
              loss_weights=None,
              weighted_metrics=None,
              run_eagerly=None,
              steps_per_execution=None,
              **kwargs):
    """Configures the model for training.

关于优化器

优化器:字符串(优化器名称)或优化器实例。

字符串格式:比如使用优化器的默认参数

实例优化器进行参数传入:

keras.optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=None, decay=0.0)
model.compile(optimizer='rmsprop',loss='mean_squared_error')

建议使用优化器的默认参数 (除了学习率 lr,它可以被自由调节)

参数:

lr: float >= 0. 学习率。
rho: float >= 0. RMSProp梯度平方的移动均值的衰减率.
epsilon: float >= 0. 模糊因子. 若为 None, 默认为 K.epsilon()。
decay: float >= 0. 每次参数更新后学习率衰减值。

类似还有好多优化器,比如SGD、Adagrad、Adadelta、Adam、Adamax、Nadam等

关于损失函数

取决于具体任务,一般来说损失函数要能够很好的刻画任务。比如

1.回归问题

希望神经网络输出的值与ground-truth的距离更近,选取能刻画距离的loss应该会更合适,比如L1 Loss、MSE Loss等

2.分类问题

希望神经网络输出的类别与ground-truth的类别一致,选取能刻画类别分布的loss应该会更合适,比如cross_entropy

具体常见选择可查看文章开始处关于损失函数的选择

关于指标

常规使用查看上述列表即可。下面说说自定义评价函数:它应该在编译的时候(compile)传递进去。该函数需要以 (y_true, y_pred) 作为输入参数,并返回一个张量作为输出结果。

import keras.backend as K
def mean_pred(y_true, y_pred):
    return K.mean(y_pred)

model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['accuracy', mean_pred])

4.网络训练与测试

1.训练(拟合)

使用model.fit(),它可以接受的参数列表

def fit(self,
          x=None,
          y=None,
          batch_size=None,
          epochs=1,
          verbose=1,
          callbacks=None,
          validation_split=0.,
          validation_data=None,
          shuffle=True,
          class_weight=None,
          sample_weight=None,
          initial_epoch=0,
          steps_per_epoch=None,
          validation_steps=None,
          validation_batch_size=None,
          validation_freq=1,
          max_queue_size=10,
          workers=1,
          use_multiprocessing=False):

这个源码有300多行长,具体的解读放在下次。

我们对训练数据进行划分,以64个样本为小批量进行网络传递,对所有数据迭代5次

model.fit(train_images, train_labels, epochs = 5, batch_size=64)

2.测试

使用model.evaluates()函数

test_loss, test_acc = model.evaluate(test_images, test_labels)

关于测试函数的返回声明:

Returns:
        Scalar test loss (if the model has a single output and no metrics)
        or list of scalars (if the model has multiple outputs
        and/or metrics). The attribute `model.metrics_names` will give you
        the display labels for the scalar outputs.

5.绘制loss和accuracy随着epochs的变化图

model.fit()返回一个History对象,它包含一个history成员,记录了训练过程的所有数据。

我们采用matplotlib.pyplot进行绘图,具体见后面完整代码。

Returns:
        A `History` object. Its `History.history` attribute is
        a record of training loss values and metrics values
        at successive epochs, as well as validation loss values
        and validation metrics values (if applicable).
def draw_loss(history):
    loss=history.history['loss']
    epochs=range(1,len(loss)+1)
    plt.subplot(1,2,1)#第一张图
    plt.plot(epochs,loss,'bo',label='Training loss')
    plt.title("Training loss")
    plt.xlabel('Epochs')
    plt.ylabel('Loss')
    plt.legend()

    plt.subplot(1,2,2)#第二张图
    accuracy=history.history['accuracy']
    plt.plot(epochs,accuracy,'bo',label='Training accuracy')
    plt.title("Training accuracy")
    plt.xlabel('Epochs')
    plt.ylabel('Accuracy')
    plt.suptitle("Train data")
    plt.legend()
    plt.show()

6.完整代码

from tensorflow.keras.datasets import mnist
from tensorflow.keras import models
from tensorflow.keras import layers
from tensorflow.keras.utils import to_categorical
import matplotlib.pyplot as plt
import numpy as np
def data_preprocess():
    (train_images, train_labels), (test_images, test_labels) = mnist.load_data()
    train_images = train_images.reshape((60000, 28, 28, 1))
    train_images = train_images.astype('float32') / 255
    #print(train_images[0])
    test_images = test_images.reshape((10000, 28, 28, 1))
    test_images = test_images.astype('float32') / 255

    train_labels = to_categorical(train_labels)
    test_labels = to_categorical(test_labels)
    return train_images,train_labels,test_images,test_labels

#搭建网络
def build_module():
    model = models.Sequential()
    #第一层卷积层
    model.add(layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)))
    #第二层最大池化层
    model.add(layers.MaxPooling2D((2,2)))
    #第三层卷积层
    model.add(layers.Conv2D(64, (3,3), activation='relu'))
    #第四层最大池化层
    model.add(layers.MaxPooling2D((2,2)))
    #第五层卷积层
    model.add(layers.Conv2D(64, (3,3), activation='relu'))
    #第六层Flatten层,将3D张量平铺为向量
    model.add(layers.Flatten())
    #第七层全连接层
    model.add(layers.Dense(64, activation='relu'))
    #第八层softmax层,进行分类
    model.add(layers.Dense(10, activation='softmax'))
    return model
def draw_loss(history):
    loss=history.history['loss']
    epochs=range(1,len(loss)+1)
    plt.subplot(1,2,1)#第一张图
    plt.plot(epochs,loss,'bo',label='Training loss')
    plt.title("Training loss")
    plt.xlabel('Epochs')
    plt.ylabel('Loss')
    plt.legend()

    plt.subplot(1,2,2)#第二张图
    accuracy=history.history['accuracy']
    plt.plot(epochs,accuracy,'bo',label='Training accuracy')
    plt.title("Training accuracy")
    plt.xlabel('Epochs')
    plt.ylabel('Accuracy')
    plt.suptitle("Train data")
    plt.legend()
    plt.show()
if __name__=='__main__':
    train_images,train_labels,test_images,test_labels=data_preprocess()
    model=build_module()
    print(model.summary())
    model.compile(optimizer='rmsprop', loss = 'categorical_crossentropy', metrics=['accuracy'])
    history=model.fit(train_images, train_labels, epochs = 5, batch_size=64)
    draw_loss(history)
    test_loss, test_acc = model.evaluate(test_images, test_labels)
    print('test_loss=',test_loss,'  test_acc = ', test_acc)

迭代训练过程中loss和accuracy的变化

由于数据集比较简单,随便的神经网络设计在测试集的准确率可达到99.2%

以上就是Python实战之MNIST手写数字识别详解的详细内容,更多关于Python MNIST手写数字识别的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python使用gluon/mxnet模块实现的mnist手写数字识别功能完整示例

    本文实例讲述了Python使用gluon/mxnet模块实现的mnist手写数字识别功能.分享给大家供大家参考,具体如下: import gluonbook as gb from mxnet import autograd,nd,init,gluon from mxnet.gluon import loss as gloss,data as gdata,nn,utils as gutils import mxnet as mx net = nn.Sequential() with net.nam

  • 详解python实现识别手写MNIST数字集的程序

    我们需要做的第⼀件事情是获取 MNIST 数据.如果你是⼀个 git ⽤⼾,那么你能够通过克隆这本书的代码仓库获得数据,实现我们的⽹络来分类数字 git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git class Network(object): def __init__(self, sizes): self.num_layers = len(sizes) self.sizes = sizes sel

  • Python利用逻辑回归模型解决MNIST手写数字识别问题详解

    本文实例讲述了Python利用逻辑回归模型解决MNIST手写数字识别问题.分享给大家供大家参考,具体如下: 1.MNIST手写识别问题 MNIST手写数字识别问题:输入黑白的手写阿拉伯数字,通过机器学习判断输入的是几.可以通过TensorFLow下载MNIST手写数据集,通过import引入MNIST数据集并进行读取,会自动从网上下载所需文件. %matplotlib inline import tensorflow as tf import tensorflow.examples.tutori

  • Python tensorflow实现mnist手写数字识别示例【非卷积与卷积实现】

    本文实例讲述了Python tensorflow实现mnist手写数字识别.分享给大家供大家参考,具体如下: 非卷积实现 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data data_path = 'F:\CNN\data\mnist' mnist_data = input_data.read_data_sets(data_path,one_hot=True) #offline da

  • Python实战小项目之Mnist手写数字识别

    目录 程序流程分析图: 传播过程: 代码展示: 创建环境 准备数据集 下载数据集 下载测试集 绘制图像 搭建神经网络 训练模型 测试模型 保存训练模型 运行结果展示: 程序流程分析图: 传播过程: 代码展示: 创建环境 使用<pip install+包名>来下载torch,torchvision包 准备数据集 设置一次训练所选取的样本数Batch_Sized的值为512,训练此时Epochs的值为8 BATCH_SIZE = 512 EPOCHS = 8 device = torch.devi

  • Python实战之MNIST手写数字识别详解

    目录 数据集介绍 1.数据预处理 2.网络搭建 3.网络配置 关于优化器 关于损失函数 关于指标 4.网络训练与测试 5.绘制loss和accuracy随着epochs的变化图 6.完整代码 数据集介绍 MNIST数据集是机器学习领域中非常经典的一个数据集,由60000个训练样本和10000个测试样本组成,每个样本都是一张28 * 28像素的灰度手写数字图片,且内置于keras.本文采用Tensorflow下Keras(Keras中文文档)神经网络API进行网络搭建. 开始之前,先回忆下机器学习

  • PyTorch CNN实战之MNIST手写数字识别示例

    简介 卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的. 卷积神经网络CNN的结构一般包含这几个层: 输入层:用于数据的输入 卷积层:使用卷积核进行特征提取和特征映射 激励层:由于卷积也是一种线性运算,因此需要增加非线性映射 池化层:进行下采样,对特征图稀疏处理,减少数据运算量. 全连接层:通常在CNN的尾部进行重新拟合,减

  • 如何将tensorflow训练好的模型移植到Android (MNIST手写数字识别)

    [尊重原创,转载请注明出处]https://blog.csdn.net/guyuealian/article/details/79672257 项目Github下载地址:https://github.com/PanJinquan/Mnist-tensorFlow-AndroidDemo 本博客将以最简单的方式,利用TensorFlow实现了MNIST手写数字识别,并将Python TensoFlow训练好的模型移植到Android手机上运行.网上也有很多移植教程,大部分是在Ubuntu(Linu

  • Python(TensorFlow框架)实现手写数字识别系统的方法

    手写数字识别算法的设计与实现 本文使用python基于TensorFlow设计手写数字识别算法,并编程实现GUI界面,构建手写数字识别系统.这是本人的本科毕业论文课题,当然,这个也是机器学习的基本问题.本博文不会以论文的形式展现,而是以编程实战完成机器学习项目的角度去描述. 项目要求:本文主要解决的问题是手写数字识别,最终要完成一个识别系统. 设计识别率高的算法,实现快速识别的系统. 1 LeNet-5模型的介绍 本文实现手写数字识别,使用的是卷积神经网络,建模思想来自LeNet-5,如下图所示

  • pytorch 利用lstm做mnist手写数字识别分类的实例

    代码如下,U我认为对于新手来说最重要的是学会rnn读取数据的格式. # -*- coding: utf-8 -*- """ Created on Tue Oct 9 08:53:25 2018 @author: www """ import sys sys.path.append('..') import torch import datetime from torch.autograd import Variable from torch im

  • Tensorflow训练MNIST手写数字识别模型

    本文实例为大家分享了Tensorflow训练MNIST手写数字识别模型的具体代码,供大家参考,具体内容如下 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入层节点=图片像素=28x28=784 OUTPUT_NODE = 10 # 输出层节点数=图片类别数目 LAYER1_NODE = 500 # 隐藏层节点数,只有一个隐藏层 BATCH

随机推荐