详解java中各类锁的机制

目录
  • 前言
  • 1. 乐观锁与悲观锁
  • 2. 公平锁与非公平锁
  • 3. 可重入锁
  • 4. 读写锁(共享锁与独占锁)
  • 6. 自旋锁
  • 7. 无锁 / 偏向锁 / 轻量级锁 / 重量级锁

前言

总结java常见的锁

区分各个锁机制以及如何使用

使用方法 锁名
考察线程是否要锁住同步资源 乐观锁和悲观锁
锁住同步资源后,要不要阻塞 不阻塞可以使用自旋锁
一个线程多个流程获取同一把锁 可重入锁
多个线程公用一把锁 读写锁(写的共享锁)
多个线程竞争要不要排队 公平锁与非公平锁

1. 乐观锁与悲观锁

悲观锁:不能同时进行多人,执行的时候先上锁。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁

乐观锁:通过版本号一致与否,即给数据加上版本,同步更新数据以及加上版本号。不会上锁,判断版本号,可以多人操作,类似生活中的抢票。每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号等机制。乐观锁适用于多读的应用类型,这样可以提高吞吐量。Redis就是利用这种check-and-set机制实现事务的

(乐观锁可以使用版本号机制和CAS算法实现)

通过具体案例演示悲观锁和乐观锁

在redis框架中

执行multi之前,执行命令watch

具体格式如下

watch key1 [key2]

具体代码格式如下

127.0.0.1:6379> flushdb
OK
127.0.0.1:6379> set add 100
OK
127.0.0.1:6379> watch add
OK
127.0.0.1:6379> multi
OK
127.0.0.1:6379(TX)> incrby add 20
QUEUED
127.0.0.1:6379(TX)> exec
1) (integer) 120
127.0.0.1:6379>

flushdb是清空数据库

但如果在另一个服务器上,输入exec,会显示出错

因为用的是乐观锁,被修改了之后版本会发生改变

总的来说:

悲观锁:单独每个人完成事情的时候,执行上锁解锁。解决并发中的问题,不支持并发操作,只能一个一个操作,效率低

乐观锁:每执行一件事情,都会比较数据版本号,谁先提交,谁先提交版本号

2. 公平锁与非公平锁

公平锁:先来先到

非公平锁:不是按照顺序,可插队

  • 公平锁:效率相对低
  • 非公平锁:效率高,但是线程容易饿死

通过这个函数Lock lock = new ReentrantLock(true);。创建一个可重入锁,true 表示公平锁,false 表示非公平锁。默认非公平锁

通过查看源码

带有参数的ReentrantLock(true)为公平锁

ReentrantLock(false)为非公平锁

主要是调用NonfairSync()与FairSync()

public ReentrantLock() {
        sync = new NonfairSync();
    }

    /**
     * Creates an instance of {@code ReentrantLock} with the
     * given fairness policy.
     *
     * @param fair {@code true} if this lock should use a fair ordering policy
     */
    public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
    }

具体其非公平锁与公平锁的源码

查看公平锁的源码

static final class FairSync extends Sync {
   private static final long serialVersionUID = -3000897897090466540L;

  /**
  * Acquires only if reentrant or queue is empty.
   */
  final boolean initialTryLock() {
   Thread current = Thread.currentThread();
   int c = getState();
   if (c == 0) {
   if (!hasQueuedThreads() && compareAndSetState(0, 1)) {
     setExclusiveOwnerThread(current);
      return true;
    }
    } else if (getExclusiveOwnerThread() == current) {
      if (++c < 0) // overflow
          throw new Error("Maximum lock count exceeded");
         setState(c);
         return true;
       }
    return false;
}

通过代码实例具体操作

//第一步  创建资源类,定义属性和和操作方法
class LTicket {
    //票数量
    private int number = 30;

    //创建可重入锁
    private final ReentrantLock lock = new ReentrantLock(true);
    //卖票方法
    public void sale() {
        //上锁
        lock.lock();
        try {
            //判断是否有票
            if(number > 0) {
                System.out.println(Thread.currentThread().getName()+" :卖出"+(number--)+" 剩余:"+number);
            }
        } finally {
            //解锁
            lock.unlock();
        }
    }
}

public class LSaleTicket {
    //第二步 创建多个线程,调用资源类的操作方法
    //创建三个线程
    public static void main(String[] args) {

        LTicket ticket = new LTicket();

new Thread(()-> {
    for (int i = 0; i < 40; i++) {
        ticket.sale();
    }
},"AA").start();

        new Thread(()-> {
            for (int i = 0; i < 40; i++) {
                ticket.sale();
            }
        },"BB").start();

        new Thread(()-> {
            for (int i = 0; i < 40; i++) {
                ticket.sale();
            }
        },"CC").start();
    }
}

结果截图如下

都是A线程执行,而BC线程都没执行到,出现了非公平锁

具体改变其设置可以通过可重入锁中的一个有参构造方法

修改代码为private final ReentrantLock lock = new ReentrantLock(true);

代码截图为

3. 可重入锁

可重入锁也叫递归锁

而且有了可重入锁之后,破解第一把之后就可以一直进入到内层结构

Object o = new Object();
new Thread(()->{
    synchronized(o) {
        System.out.println(Thread.currentThread().getName()+" 外层");

        synchronized (o) {
            System.out.println(Thread.currentThread().getName()+" 中层");

            synchronized (o) {
                System.out.println(Thread.currentThread().getName()+" 内层");
            }
        }
    }

},"t1").start();

synchronized (o)代表锁住当前{ }内的代码块

以上都是synchronized锁机制

下面讲解lock锁机制

public class SyncLockDemo {

    public synchronized void add() {
        add();
    }

    public static void main(String[] args) {
        //Lock演示可重入锁
        Lock lock = new ReentrantLock();
        //创建线程
        new Thread(()->{
            try {
                //上锁
                lock.lock();
                System.out.println(Thread.currentThread().getName()+" 外层");

                try {
                    //上锁
                    lock.lock();
                    System.out.println(Thread.currentThread().getName()+" 内层");
                }finally {
                    //释放锁
                    lock.unlock();
                }
            }finally {
                //释放做
                lock.unlock();
            }
        },"t1").start();

        //创建新线程
        new Thread(()->{
            lock.lock();
            System.out.println("aaaa");
            lock.unlock();
        },"aa").start();
        }
 }

在同一把锁中的嵌套锁,内部嵌套锁没解锁还是可以输出,但是如果跳出该线程,执行另外一个线程就会造成死锁

要把握上锁与解锁的概念,都要写上

4. 读写锁(共享锁与独占锁)

读锁是共享锁,写锁是独占锁

  • 共享锁的一种具体实现
  • 读写锁管理一组锁,一个是只读的锁,一个是写锁。

读写锁:一个资源可以被多个读线程访问,也可以被一个写线程访问,但不能同时存在读写线程,读写互斥,读读共享(写锁独占,读锁共享,写锁优先级高于读锁)

读写锁ReentrantReadWriteLock

读锁为ReentrantReadWriteLock.ReadLock,readLock()方法

写锁为ReentrantReadWriteLock.WriteLock,writeLock()方法

创建读写锁对象private ReadWriteLock rwLock = new ReentrantReadWriteLock();

写锁 加锁 rwLock.writeLock().lock();,解锁为rwLock.writeLock().unlock();

读锁 加锁rwLock.readLock().lock();,解锁为rwLock.readLock().unlock();

案例分析:

模拟多线程在map中取数据和读数据

完整代码如下

//资源类
class MyCache {
    //创建map集合
    private volatile Map<String,Object> map = new HashMap<>();

    //创建读写锁对象
    private ReadWriteLock rwLock = new ReentrantReadWriteLock();

    //放数据
    public void put(String key,Object value) {
        //添加写锁
        rwLock.writeLock().lock();

        try {
            System.out.println(Thread.currentThread().getName()+" 正在写操作"+key);
            //暂停一会
            TimeUnit.MICROSECONDS.sleep(300);
            //放数据
            map.put(key,value);
            System.out.println(Thread.currentThread().getName()+" 写完了"+key);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            //释放写锁
            rwLock.writeLock().unlock();
        }
    }

    //取数据
    public Object get(String key) {
        //添加读锁
        rwLock.readLock().lock();
        Object result = null;
        try {
            System.out.println(Thread.currentThread().getName()+" 正在读取操作"+key);
            //暂停一会
            TimeUnit.MICROSECONDS.sleep(300);
            result = map.get(key);
            System.out.println(Thread.currentThread().getName()+" 取完了"+key);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            //释放读锁
            rwLock.readLock().unlock();
        }
        return result;
    }
}

public class ReadWriteLockDemo {
    public static void main(String[] args) throws InterruptedException {
        MyCache myCache = new MyCache();
        //创建线程放数据
        for (int i = 1; i <=5; i++) {
            final int num = i;
            new Thread(()->{
                myCache.put(num+"",num+"");
            },String.valueOf(i)).start();
        }

        TimeUnit.MICROSECONDS.sleep(300);

        //创建线程取数据
        for (int i = 1; i <=5; i++) {
            final int num = i;
            new Thread(()->{
                myCache.get(num+"");
            },String.valueOf(i)).start();
        }
    }
}

5. 互斥锁

互斥锁是独占锁的一种常规实现,是指某一资源同时只允许一个访问者对其进行访问,具有唯一性和排它性

pthread_mutex_t mutex=PTHREAD_MUTEX_INITIALIZER;//创建互斥锁并初始化

pthread_mutex_lock(&mutex);//对线程上锁,此时其他线程阻塞等待该线程释放锁

//要执行的代码段

pthread_mutex_unlock(&mutex);//执行完后释放锁

6. 自旋锁

查看百度百科的解释,具体如下 :

它是为实现保护共享资源而提出一种锁机制。其实,自旋锁与互斥锁比较类似,它们都是为了解决对某项资源的互斥使用。无论是互斥锁,还是自旋锁,在任何时刻,最多只能有一个保持者,也就说,在任何时刻最多只能有一个执行单元获得锁。但是两者在调度机制上略有不同。对于互斥锁,如果资源已经被占用,资源申请者只能进入睡眠状态。但是自旋锁不会引起调用者睡眠,如果自旋锁已经被别的执行单元保持,调用者就一直循环在那里看是否该自旋锁的保持者已经释放了锁,"自旋"一词就是因此而得名

通俗的来说就是一个线程在获取锁的时候,如果锁已经被其它线程获取,那么该线程将循环等待,然后不断的判断锁是否能够被成功获取,直到获取到锁才会退出循环。获取锁的线程一直处于活跃状态,但是并没有执行任何有效的任务。

其特点:

  1. 持有锁时间等待过长,消耗CPU
  2. 无法满足等待时间最长的线程优先获取锁。不公平的锁就会存在“线程饥饿”问题
  3. 自旋锁不会使线程状态发生切换,处于用户态(不会到内核态进行线程的状态转换),一直都是活跃,不会使线程进入阻塞状态,减少了不必要的上下文切换,执行速度快。

其模拟算法如下

do{
	b=1;
	while(b){
		lock(bus);
		b = test_and_set(&lock);
		unlock(bus);
	}
	//临界区
	//lock = 0;
	//其余部分
}while(1)

7. 无锁 / 偏向锁 / 轻量级锁 / 重量级锁

  • 无锁:没有对资源进行锁定,所有的线程都能访问并修改同一个资源,但同时只有一个线程能修改成功
  • 偏向锁:是指一段同步代码一直被一个线程所访问,那么该线程会自动获取锁,降低获取锁的代价
  • 轻量级锁:锁是偏向锁的时候,被另外的线程所访问,偏向锁就会升级为轻量级锁,其他线程会通过自旋的形式尝试获取锁,不会阻塞,从而提高性能
  • 重量级锁:线程并发加剧,线程的自旋超过了一定次数,或者一个线程持有锁,一个线程在自旋,还有线程要访问

以上就是详解java中各类锁的机制的详细内容,更多关于java锁的机制的资料请关注我们其它相关文章!

(0)

相关推荐

  • 浅谈Java锁机制

    目录 1.悲观锁和乐观锁 2.悲观锁应用 3.乐观锁应用 4.CAS 5.手写一个自旋锁 1.悲观锁和乐观锁 我们可以将锁大体分为两类: 悲观锁 乐观锁 顾名思义,悲观锁总是假设最坏的情况,每次获取数据的时候都认为别的线程会修改,所以每次在拿数据的时候都会上锁,这样其它线程想要修改这个数据的时候都会被阻塞直到获取锁.比如MySQL数据库中的表锁.行锁.读锁.写锁等,Java中的synchronized和ReentrantLock等. 而乐观锁总是假设最好的情况,每次获取数据的时候都认为别的线程不

  • Java并发编程之显式锁机制详解

    我们之前介绍过synchronized关键字实现程序的原子性操作,它的内部也是一种加锁和解锁机制,是一种声明式的编程方式,我们只需要对方法或者代码块进行声明,Java内部帮我们在调用方法之前和结束时加锁和解锁.而我们本篇将要介绍的显式锁是一种手动式的实现方式,程序员控制锁的具体实现,虽然现在越来越趋向于使用synchronized直接实现原子操作,但是了解了Lock接口的具体实现机制将有助于我们对synchronized的使用.本文主要涉及以下一些内容: 接口Lock的基本组成成员 可重入锁Re

  • Java线程并发中常见的锁机制详细介绍

    随着互联网的蓬勃发展,越来越多的互联网企业面临着用户量膨胀而带来的并发安全问题.本文着重介绍了在java并发中常见的几种锁机制. 1.偏向锁 偏向锁是JDK1.6提出来的一种锁优化的机制.其核心的思想是,如果程序没有竞争,则取消之前已经取得锁的线程同步操作.也就是说,若某一锁被线程获取后,便进入偏向模式,当线程再次请求这个锁时,就无需再进行相关的同步操作了,从而节约了操作时间,如果在此之间有其他的线程进行了锁请求,则锁退出偏向模式.在JVM中使用-XX:+UseBiasedLocking pac

  • Java锁机制Lock用法示例

    本文实例讲述了Java锁机制Lock用法.分享给大家供大家参考,具体如下: package com.expgiga.JUC; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; /** * 一.用于解决多线程安全问题的方式: * 1.同步代码块 synchronized 隐式锁 * 2.同步方法 synchronized 隐式锁 * 3.同步锁Lock (jdk1.5以后

  • Java实现synchronized锁同步机制

    目录 synchronized 实现原理 适应性自旋(Adaptive Spinning) 锁升级 Java 对象头 偏向锁(Biased Locking) 偏向锁获取 偏向锁释放 关闭偏向锁 轻量级锁(Lightweight Locking) 轻量级锁获取 轻量级锁解锁 重量级锁 锁消除(Lock Elimination) 锁粗化(Lock Coarsening) 文末总结 synchronized 是 java 内置的同步锁实现,一个关键字实现对共享资源的锁定.synchronized 有

  • Java多线程锁机制相关原理实例解析

    上下文:程序运行需要的环境(外部变量) 上下文切换:将之前的程序需要的外部变量复制保存,然后切换到新的程序运行环境 系统调用:(用户态陷入操作系统,通过操作系统执行内核态指令,执行完回到用户态)用户态--内核态--用户态:两次上下文切换 线程wait()方法:将自身加入等待队列,发生了一次上下文切换 notify()方法:将线程唤醒,也发生了上下文切换 Java线程中的锁:偏向锁.轻量级锁.重量级锁. 注意:偏向锁和轻量级锁都没有发生竞争,重量级锁发生了竞争. 偏向锁:可重入和经常使用某一个线程

  • java synchronized 锁机制原理详解

    目录 前言: 1.synchronized 的作用: 2.synchronized 底层语义原理: 3. synchronized 的显式同步与隐式同步: 3.1.synchronized 代码块底层原理: 3.2.synchronized 方法底层原理: 4.JVM 对 synchronized 锁的优化: 4.1.锁升级:偏向锁->轻量级锁->自旋锁->重量级锁 4.1.1.synchronized 的 Mark word 标志位: 4.1.2.锁升级过程: 4.2.锁消除: 4.3

  • 详解java中各类锁的机制

    目录 前言 1. 乐观锁与悲观锁 2. 公平锁与非公平锁 3. 可重入锁 4. 读写锁(共享锁与独占锁) 6. 自旋锁 7. 无锁 / 偏向锁 / 轻量级锁 / 重量级锁 前言 总结java常见的锁 区分各个锁机制以及如何使用 使用方法 锁名 考察线程是否要锁住同步资源 乐观锁和悲观锁 锁住同步资源后,要不要阻塞 不阻塞可以使用自旋锁 一个线程多个流程获取同一把锁 可重入锁 多个线程公用一把锁 读写锁(写的共享锁) 多个线程竞争要不要排队 公平锁与非公平锁 1. 乐观锁与悲观锁 悲观锁:不能同时

  • 详解Java中的锁Lock和synchronized

    一.Lock接口 1.Lock接口和synchronized内置锁 a)synchronized:Java提供的内置锁机制,Java中的每个对象都可以用作一个实现同步的锁(内置锁或者监视器Monitor),线程在进入同步代码块之前需要或者这把锁,在退出同步代码块会释放锁.而synchronized这种内置锁实际上是互斥的,即没把锁最多只能由一个线程持有. b)Lock接口:Lock接口提供了与synchronized相似的同步功能,和synchronized(隐式的获取和释放锁,主要体现在线程进

  • 详解java中动态代理实现机制

    代理模式是常用的java设计模式,它的特征是代理类与委托类有同样的接口,代理类主要负责为委托类预处理消息.过滤消息.把消息转发给委托类,以及事后处理消息等.代理类与委托类之间通常会存在关联关系,一个代理类的对象与一个委托类的对象关联,代理类的对象本身并不真正实现服务,而是通过调用委托类的对象的相关方法,来提供特定的服务. JAVA各种动态代理实现的比较 接口 interface AddInterface{ int add(int a, int b); } interface SubInterfa

  • 详解Java中的ReentrantLock锁

    ReentrantLock锁 ReentrantLock是Java中常用的锁,属于乐观锁类型,多线程并发情况下.能保证共享数据安全性,线程间有序性 ReentrantLock通过原子操作和阻塞实现锁原理,一般使用lock获取锁,unlock释放锁, 下面说一下锁的基本使用和底层基本实现原理,lock和unlock底层 lock的时候可能被其他线程获得所,那么此线程会阻塞自己,关键原理底层用到Unsafe类的API: CAS和park 使用 java.util.concurrent.locks.R

  • 详解Java中的悲观锁与乐观锁

    一.悲观锁 悲观锁顾名思义是从悲观的角度去思考问题,解决问题.它总是会假设当前情况是最坏的情况,在每次去拿数据的时候,都会认为数据会被别人改变,因此在每次进行拿数据操作的时候都会加锁,如此一来,如果此时有别人也来拿这个数据的时候就会阻塞知道它拿到锁.在Java中,Synchronized和ReentrantLock等独占锁的实现机制就是基于悲观锁思想.在数据库中也经常用到这种锁机制,如行锁,表锁,读写锁等,都是在操作之前先上锁,保证共享资源只能给一个操作(一个线程)使用. 由于悲观锁的频繁加锁,

  • 详解java中反射机制(含数组参数)

    详解java中反射机制(含数组参数) java的反射是我一直非常喜欢的地方,因为有了这个,可以让程序的灵活性大大的增加,同时通用性也提高了很多.反射原理什么的,我就不想做过大介绍了,网上一搜,就一大把.(下面我是只附录介绍下) Reflection 是Java被视为动态(或准动态)语言的一个关键性质.这个机制允许程序在运行时透过Reflection APIs取得任何一个已知名称的class的内部信息,包括其modifiers(诸如public, static 等等).superclass(例如O

  • 详解Java中的反射机制和动态代理

    一.反射概述 反射机制指的是Java在运行时候有一种自观的能力,能够了解自身的情况为下一步做准备,其想表达的意思就是:在运行状态中,对于任意一个类,都能够获取到这个类的所有属性和方法:对于任意一个对象,都能够调用它的任意一个方法和属性(包括私有的方法和属性),这种动态获取的信息以及动态调用对象的方法的功能就称为java语言的反射机制.通俗点讲,通过反射,该类对我们来说是完全透明的,想要获取任何东西都可以,这是一种动态获取类的信息以及动态调用对象方法的能力. 想要使用反射机制,就必须要先获取到该类

  • 一文详解Java中的类加载机制

    目录 一.前言 二.类加载的时机 2.1 类加载过程 2.2 什么时候类初始化 2.3 被动引用不会初始化 三.类加载的过程 3.1 加载 3.2 验证 3.3 准备 3.4 解析 3.5 初始化 四.父类和子类初始化过程中的执行顺序 五.类加载器 5.1 类与类加载器 5.2 双亲委派模型 5.3 破坏双亲委派模型 六.Java模块化系统 一.前言 Java虚拟机把描述类的数据从Class文件加载到内存,并对数据进行校验.转换解析和初始化,最 终形成可以被虚拟机直接使用的Java类型,这个过程

  • 图文详解Java中的序列化机制

    目录 概述 对象序列化和反序列化机制 修改默认的序列化机制 使用transient关键字 自定义readObject.writeObject方法 实现Externalizable接口 serialVersionUID的作用 使用序列化clone 概述 java中的序列化可能大家像我一样都停留在实现Serializable接口上,对于它里面的一些核心机制没有深入了解过.直到最近在项目中踩了一个坑,就是序列化对象添加一个字段以后,使用方系统报了反序列化失败,原因是我们双方的序列化对象没有加上seri

  • 详解java中的阻塞队列

    阻塞队列简介 阻塞队列(BlockingQueue)首先是一个支持先进先出的队列,与普通的队列完全相同: 其次是一个支持阻塞操作的队列,即: 当队列满时,会阻塞执行插入操作的线程,直到队列不满. 当队列为空时,会阻塞执行获取操作的线程,直到队列不为空. 阻塞队列用在多线程的场景下,因此阻塞队列使用了锁机制来保证同步,这里使用的可重入锁: 而对于阻塞与唤醒机制则有与锁绑定的Condition实现 应用场景:生产者消费者模式 java中的阻塞队列 java中的阻塞队列根据容量可以分为有界队列和无界队

随机推荐