C++实现蓝桥杯竞赛题目---搭积木

小明对搭积木非常感兴趣。他的积木都是同样大小的正立方体。
在搭积木时,小明选取 m 块积木作为地基,将他们在桌子上一字排开,中间不留空隙,并称其为第0层。
随后,小明可以在上面摆放第1层,第2层,……,最多摆放至第n层。摆放积木必须遵循三条规则

规则1:每块积木必须紧挨着放置在某一块积木的正上方,与其下一层的积木对齐;

规则2:同一层中的积木必须连续摆放,中间不能留有空隙;

规则3:小明不喜欢的位置不能放置积木。

其中,小明不喜欢的位置都被标在了图纸上。图纸共有n行,从下至上的每一行分别对应积木的第1层至第n层。每一行都有m个字符,字符可能是‘.'或‘X',其中‘X'表示这个位置是小明不喜欢的。
现在,小明想要知道,共有多少种放置积木的方案。他找到了参加蓝桥杯的你来帮他计算这个答案。
由于这个答案可能很大,你只需要回答这个答案对1000000007(十亿零七)取模后的结果。
注意:地基上什么都不放,也算作是方案之一种。

输入格式:
数据的第一行有两个正整数n和m,表示图纸的大小。
随后n行,每行有m个字符,用来描述图纸 。每个字符只可能是‘.'或‘X'。

输出格式:
一个整数,表示答案对1000000007取模后的结果。

输入样例1:

2 3

..X

.X.

输出样例1:

4

输入样例2:

3 3

..X

.X.

...

输出样例2:

16

解题思路:

首先先推导出递推式,观察题目,可以得到递推式为:

用代码表示即为:

for(int c=1;c<a;c++){
	for(int d=b;d<m;d++){
		dp[i][a][b]+=dp[i-1][c][d];
	}
}

意思是
在第i层的a到b长度放置积木的可能数=在i-1层的所有包含a到b的长度的积木的可能数的和。

除了单纯的判断递推式以外,还需要考虑一种特殊情况,就是积木放置的长度中存在X,即小明不想放的位置,那么就不需要进行递推,直接返回0。
判断[a,b]是否存在X,可以用前缀和来判断,节省时间。
前缀和初始化为:

s[i][j] = s[i][j-1] + (temp=='X');

推导出递推式以后可以很容易的写出代码:

#include<iostream>

using namespace std;

const int N = 30;
int n, m;
int dp[30][30][30];
int s[30][30];
int cnt=1;

int main() {
	cin >> n >> m;
	getchar();
	for (int i = n; i >0; i--) {//初始化前缀和
		for (int j = 1; j <= m; j++) {
			char temp = getchar();
			s[i][j] = s[i][j-1] + (temp=='X');
		}
		getchar();
	}
	dp[0][1][m]=1;//第0层,长度从1到m的积木有一种可能
	for (int i = 1; i <=n; i++) {//第i层
		for (int a = 1; a <= m; a++) {
			for (int b = a; b <= m; b++) {
				if (s[i][b] - s[i][a - 1] != 0) {//a到b区间存在X
					dp[i][a][b] = 0;
					continue;
				}
				for (int c = 1; c <= a; c++) {
					for (int d = b; d <= m; d++) {
						dp[i][a][b] += dp[i - 1][c][d];
					}
				}
				cnt += dp[i][a][b];//记录数量
			}
		}
	}
	cout << cnt;
	return 0;
}

优化

但是仔细一想,五个for循环无法通过最后50%的测试点,所以需要进行优化,观察最内层的两个c,d的for循环可知,有如下图像:

实际上最内层的两个循环就是在求第i-1层的红色区域面积。
那我们再利用二维的前缀和进行存储,那就可以优化掉两个循环,从而使时间复杂度降低,通过最后的测试点。

#include<iostream>

using namespace std;

const int N = 30;
const int mod = 1e9 + 7;
int n, m;
int dp[30][30][30];
int s[30][30];//用来判断是否存在X
int sum[30][30];//指的是左下角所有dp[i][][]的和
int cnt=1;

void get_fixsum(int i) {
	//更新第i层的前缀和数组
	for (int a = 1; a <= m; a++) {
		for (int b = 1; b <= m; b++) {
			sum[a][b] =(sum[a][b-1]+sum[a-1][b]-sum[a-1][b-1]+ dp[i][a][b])%mod;
		}
	}
}

int main() {
	cin >> n >> m;
	getchar();
	for (int i = n; i >0; i--) {
		for (int j = 1; j <= m; j++) {
			char temp = getchar();
			s[i][j] = s[i][j-1] + (temp=='X');
		}
		getchar();
	}
	dp[0][1][m]=1;//第0层,长度从1到m的积木有一种可能
	get_fixsum(0);
	for (int i = 1; i <=n; i++) {//层数
		for (int a = 1; a <= m; a++) {
			for (int b = a; b <= m; b++) {
				if (s[i][b] - s[i][a - 1] != 0) {//a到b区间存在X
					dp[i][a][b] = 0;
					continue;
				}
				dp[i][a][b] = (sum[a][m] - sum[0][m] - sum[a][b-1] + sum[0][b-1])%mod;
				cnt =(cnt+ dp[i][a][b])%mod;
			}
		}
		get_fixsum(i);
	}
	cout << (cnt+mod)%mod;//防止出现负数
	return 0;
}

到此这篇关于C++实现蓝桥杯竞赛题目---搭积木的文章就介绍到这了,更多相关C++实现蓝桥杯---搭积木内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++基于socket多线程实现网络聊天室

    本文实例为大家分享了C++基于socket多线程实现网络聊天室的具体代码,供大家参考,具体内容如下 1. 实现图解 2. 聊天室服务端:TCP_Server_Chat.cpp #include <winsock2.h> // winsock2的头文件 #include <iostream> #pragma comment(lib, "ws2_32.lib") using namespace std; // stdcall的线程处理函数 DWORD WINAPI

  • C++/CLI在vs上的安装和初步使用教程

    C++/CLI中见过这个符号:^ C++中我们用*来表示一个指针,在C++/CLI中,我们用符号^来表示句柄. 现在*用来指定CRT heap上的原生指针,而句柄是安全指针,它位于托管堆上. 你可以把句柄当成引用来考虑,和原生指针不同的是,他们不会引起内存泄漏,即便没有对它们进行适当的删除,因为GC会处理这些问题,并且他们没有一个固定的内存地址,所以在执行的时候它们会被移来移去. %对于^就相当于&对于* N* pn = new N;//分配在原生heap上 n& rn = *pn;//绑

  • C++基于socket编程实现聊天室功能

    本文实例为大家分享了C++基于socket编程实现聊天室的具体代码,供大家参考,具体内容如下 服务端 // server.cpp : 此文件包含 "main" 函数.程序执行将在此处开始并结束. // #include "pch.h" #include <iostream> #include "winsock2.h" #include "stdlib.h" #include "stdio.h"

  • C++入门笔记之std::vector容器详解

    目录 前言 1. vector的构造函数原型: 2. vector的赋值函数原型: 3. vector的容量和大小函数原型: 4. vector的插入和删除函数原型: 5. vector的存取操作函数原型: 6. vector的呼唤容器函数原型: 总结 前言 vector实质是C++的一个类,与数组很相似,但是vector的优势是可以动态扩展,不需要考虑其内存大小. 定义: 向量(Vector)是一个封装了动态大小数组的顺序容器(Sequence Container).跟任意其它类型容器一样,它

  • C++实现简易UDP网络聊天室

    本文实例为大家分享了C++实现简易UDP网络聊天室的具体代码,供大家参考,具体内容如下 工程名:NetSrv NetSrv.cpp //服务器端 #include<Winsock2.h> #include<stdio.h> void main() { //加载套接字库 WORD wVersionRequested; WSADATA wsaData; int err; wVersionRequested = MAKEWORD(1,1); err = WSAStartup(wVersi

  • C++实现聊天程序

    本文实例为大家分享了C++实现聊天程序的具体代码,供大家参考,具体内容如下 服务端 #include<iostream> #include<WinSock2.h> #pragma comment(lib,"ws2_32.lib") using namespace std; void initialization(); int main(){ //定义长度变量 int send_len=0; int recv_len=0; int len=0; //定义发送缓冲区

  • C++实现蓝桥杯竞赛题目---搭积木

    小明对搭积木非常感兴趣.他的积木都是同样大小的正立方体. 在搭积木时,小明选取 m 块积木作为地基,将他们在桌子上一字排开,中间不留空隙,并称其为第0层. 随后,小明可以在上面摆放第1层,第2层,--,最多摆放至第n层.摆放积木必须遵循三条规则 规则1:每块积木必须紧挨着放置在某一块积木的正上方,与其下一层的积木对齐: 规则2:同一层中的积木必须连续摆放,中间不能留有空隙: 规则3:小明不喜欢的位置不能放置积木. 其中,小明不喜欢的位置都被标在了图纸上.图纸共有n行,从下至上的每一行分别对应积木

  • java蓝桥杯历年真题及答案整理(小结)

    蓝桥杯java历年真题及答案整理(闭关一个月,呕心沥血整理出来的) 1 全排列 是这样的,如果给定N个不同字符,将这N个字符全排列,最终的结果将会是N!种.如:给定 A.B.C三个不同的字符,则结果为:ABC.ACB.BAC.BCA.CAB.CBA一共3!=3*2=6种情况. package Question1_9; import java.util.Scanner; import java.util.Vector; public class Question1 { public static

  • java蓝桥杯试题

    因为要参加蓝桥杯,琢磨了一下算法,原来数学不好是这么难搞:下面是一些蓝桥杯的试题(习题).我用的是java ,我看网上的人多数用的是c语言.有更好的方法希望可以分享一下下. 1.      有50枚硬币,可能包括4种类型:1元,5角,1角,5分.已知总价值为20元.求各种硬币的数量. 比如:2,34,6,8 就是一种答案. 而 2,33,15,0 是另一个可能的答案,显然答案不唯一. 你的任务是确定类似这样的不同的方案一共有多少个(包括已经给出的2个)? { 可以看出这里的硬币数量和存在着 1元

  • Java实现蓝桥杯 算法提高 线段和点

    目录 一.算法提高 线段和点 1.时间限制 2.问题描述 3.输入格式 4.输出格式 5.数据规模和约定 一.算法提高 线段和点 1.时间限制 1.0s 内存限制:256.0MB 2.问题描述 有n个点和m个区间,点和区间的端点全部是整数,对于点a和区间[b,c],若a>=b且a<=c,称点a满足区间[b,c]. 求最小的点的子集,使得所有区间都被满足. 3.输入格式 第一行两个整数n m 以下n行 每行一个整数,代表点的坐标 以下m行 每行两个整数,代表区间的范围 4.输出格式 输出一行,最

  • Java蓝桥杯实现线段和点

    目录 一.算法提高 线段和点 1.时间限制 2.问题描述 3.输入格式 4.输出格式 5.数据规模和约定 一.算法提高 线段和点 1.时间限制 1.0s 内存限制:256.0MB 2.问题描述 有n个点和m个区间,点和区间的端点全部是整数,对于点a和区间[b,c],若a>=b且a<=c,称点a满足区间[b,c]. 求最小的点的子集,使得所有区间都被满足. 3.输入格式 第一行两个整数n m 以下n行 每行一个整数,代表点的坐标 以下m行 每行两个整数,代表区间的范围 4.输出格式 输出一行,最

  • Java实现蓝桥杯数独游戏的示例代码

    你一定听说过"数独"游戏. 如图,玩家需要根据9×9盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行.每一列.每一个同色九宫内的数字均含1-9,不重复. 数独的答案都是唯一的,所以,多个解也称为无解. 本图的数字据说是芬兰数学家花了3个月的时间设计出来的较难的题目.但对会使用计算机编程的你来说,恐怕易如反掌了. 本题的要求就是输入数独题目,程序输出数独的唯一解.我们保证所有已知数据的格式都是合法的,并且题目有唯一的解. 格式要求: 输入9行,每行9个数字,0代表未知,其它数字为

  • Java实现蓝桥杯G将军的示例代码

    G将军有一支训练有素的军队,这个军队除开G将军外,每名士兵都有一个直接上级(可能是其他士兵,也可能是G将军).现在G将军将接受一个特别的任务,需要派遣一部分士兵(至少一个)组成一个敢死队,为了增加队员的独立性,要求如果一名士兵在队中,他的直接上级不能在队中. 请问,G将军有多少种派出队的方法.注意,G将军也可以作为一个士兵进入队. 输入格式 输入的第一行包含一个整数n,表示包括G将军在内的军队的人数.军队的士兵从1至n编号,G将军编号为1. 接下来n-1个数,分别表示编号为2, 3, -, n的

  • Python实现统计代码行的方法分析

    本文实例讲述了Python实现统计代码行的方法.分享给大家供大家参考,具体如下: 参加光荣之路测试开发班已三月有余,吴总上课也总问" 咱们的课上了这么多次了大家实践了多少行代码了?".这里是一个一脸懵逼的表情.该怎么统计呢?一个个文件数当然不可取,能用代码解决的事咱们坚决不动手.最近在网上刷题时也正好遇到有这么一道题,所以决定撸一撸. 题目:有个目录,里面是你自己写过的程序,统计一下你写过多少行代码.包括空行和注释,但是要分别列出来. 首先分析一下思路捋一下大象装冰箱的步骤,从一个给定

  • C++数组放在main函数内外的区别

    目录 思路 错误代码 正确代码 问题分析 总结 先来看一道小题,第十届蓝桥杯省赛C++/B组填空题第三题 试题 C:数列求值 本题总分:10 分 [问题描述] 给定数列 1, 1, 1, 3, 5, 9, 17, …,从第 4 项开始,每项都是前 3 项的和.求第 20190324 项的最后 4 位数字. [答案提交] 这是一道结果填空的题,你只需要算出结果后提交即可.本题的结果为一 个 4 位整数(提示:答案的千位不为 0),在提交答案时只填写这个整数,填写多余的内容将无法得分. 思路 显然,

  • C语言数学问题与简单DP背包问题详解

    目录 数学 买不到的数目 蚂蚁感冒 饮料换购 简单DP 背包问题 二维 一维 数学 顾名思义,数学类的题就是都可以用数学知识求解. 买不到的数目 这是第四届蓝桥杯省赛C++A组,第四届蓝桥杯省赛JAVAC组的一道题 小明开了一家糖果店. 他别出心裁:把水果糖包成4颗一包和7颗一包的两种. 糖果不能拆包卖. 小朋友来买糖的时候,他就用这两种包装来组合. 当然有些糖果数目是无法组合出来的,比如要买 10 颗糖. 你可以用计算机测试一下,在这种包装情况下,最大不能买到的数量是17. 大于17的任何数字

随机推荐