Keras Convolution1D与Convolution2D区别说明

以下是Convolution1D的例子:

from keras.layers import Convolution1D
from keras.models import Sequential

model=Sequential()
model.add(Convolution1D(
 filters=64,  #64个滤波器 -》生成 64深度
 kernel_size=3, #长度 为 3
 input_shape=(10,32), # 输入形状 就是 图片形状 (step,input_dim) input_dim 一般指词_dim
 padding='same' # 过滤模式
))
#Output Shape:(None, 10, 64) 

model.add(Convolution1D(
 filters=32,
 kernel_size=3,
 padding='same'
))
#Output Shape:(None, 10, 32) 

以下是Convolution2D的例子:

from keras.layers import Convolution2D
from keras.models import Sequential

model=Sequential()
model.add(Convolution2D(
 filters=64, # 64个滤波器 -》生成 64深度
 kernel_size=3, # 滤波器窗口 大小(3,3)
 padding='same', # 过滤模式
 input_shape=(256,256,3), # 输入形状 就是 图片形状 # 默认 data_format:channels_last (rows,cols,channels)
))
#Output Shape:(None, 256, 256, 64)

model.add(Convolution2D(
 filters=32,
 kernel_size=3,
 padding='same', # 过滤模式
))
#Output Shape:(None, 256, 256, 32)

1.Convolution1D主要用于nlp,Convolution2D主要用于cv。实际上,Convolution1D也可以用于cv,Convolution2D也可以用于nlp,只是那个时候不是标准的卷积方式,而是经过一定变形的卷积。

2.可以看到Convolution1D的 只有3这一个参数,Convolution2D 却有两个参数3(即长度为3,宽度为3的卷积窗口)。表面上Convolution1D没有给出卷积的大小,Convolution2D给出了。实际上,在Convolution1D中,长度 为 句子 所有 word 的长度,宽度就是 句子中word的 dim (全称:dimension) ,宽度自动把整个tensor的宽度包裹住。

3.Convolution1D的input_shape是 ( 长度为10,宽度为32 )的tensor。Convolution2D的input_shape是 ( 宽度为256,长度为256,3个channel ) 的tensor。

下面画出大概的区别:

补充知识:对于keras.layers.Conv1D的kernel_size参数的理解

今天在用keras添加卷积层的时候,发现了kernel_size这个参数不知怎么理解,keras中文文档是这样描述的:

kernel_size: 一个整数,或者单个整数表示的元组或列表, 指明 1D 卷积窗口的长度。

又经过多方查找,大体理解如下:

因为是添加一维卷积层Conv1D(),一维卷积一般会处理时序数据,所以,卷积核的宽度为1,而kernel_size就是卷积核的长度了,这样的意思就是这个卷积核是一个长方形的卷积核。

以上这篇Keras Convolution1D与Convolution2D区别说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • windows安装TensorFlow和Keras遇到的问题及其解决方法

    安装TensorFlow在Windows上,真是让我心力交瘁,想死的心都有了,在Windows上做开发真的让人发狂. 首先说一下我的经历,本来也就是起初,网上说python3.7不支持TensorFlow环境,而且使用Anaconda最好,所以我将我之前Windows上所有的python环境卸载掉!!!,对没错,是所有,包括Anaconda环境,python环境,pycharm环境也卸载掉了.而且我丧心病狂的在电脑上找几乎所有关于python的字眼,全部删除掉,统统不留.只是为了铁了心在Wind

  • Python3.7安装keras和TensorFlow的教程图解

    win10 Python3.7安装keras深度学习集成包 TensorFlow 和Ubuntu下安装keras 在win10下安装 安装时必须检查你的python是否为64位,32位不支持!!! 32 位卸载 下载其中的64位在python官网 https://www.python.org/downloads/windows/ 然后在 pip install --upgrade tensorflow 如果出现错误可以手动选择下载然后安装对于3.7以上版本更适合 https://www.lfd.

  • 解决Keras 与 Tensorflow 版本之间的兼容性问题

    在利用Keras进行实验的时候,后端为Tensorflow,出现了以下问题: 1. 服务器端激活Anaconda环境跑程序时,实验结果很差. 环境:tensorflow 1.4.0,keras 2.1.5 2. 服务器端未激活Anaconda环境跑程序时,实验结果回到正常值. 环境:tensorflow 1.7.0,keras 2.0.8 3. 自己PC端跑相同程序时,实验结果回到正常值. 环境:tensorflow 1.6.0,keras 2.1.5 怀疑实验结果的异常性是由于Keras和Te

  • Keras Convolution1D与Convolution2D区别说明

    以下是Convolution1D的例子: from keras.layers import Convolution1D from keras.models import Sequential model=Sequential() model.add(Convolution1D( filters=64, #64个滤波器 ->生成 64深度 kernel_size=3, #长度 为 3 input_shape=(10,32), # 输入形状 就是 图片形状 (step,input_dim) inpu

  • 浅谈keras保存模型中的save()和save_weights()区别

    今天做了一个关于keras保存模型的实验,希望有助于大家了解keras保存模型的区别. 我们知道keras的模型一般保存为后缀名为h5的文件,比如final_model.h5.同样是h5文件用save()和save_weight()保存效果是不一样的. 我们用宇宙最通用的数据集MNIST来做这个实验,首先设计一个两层全连接网络: inputs = Input(shape=(784, )) x = Dense(64, activation='relu')(inputs) x = Dense(64,

  • Keras在mnist上的CNN实践,并且自定义loss函数曲线图操作

    使用keras实现CNN,直接上代码: from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, MaxPooling2D from keras.utils import np_utils from keras imp

  • Keras 如何修改图片通道的顺序

    1. Error 在使用Keras.layers.convolutional.Convolution2D的时候 Convolution2D(32, 5, 5, border_mode='valid', input_shape=(1, 28, 28), activation='relu') 报如下错误: OverflowError: Range exceeds valid bounds 这是因为Keras配置图片通道顺序错误导致的.上面代码使用图片通道顺序是[channels][height][w

  • Kears+Opencv实现简单人脸识别

    写在前面:这篇文章也是借鉴了一些前辈的代码和思路写的,代码有些也是复用了别人的. 先说下思路: 1.首先利用Opencv检测出人脸的区域 2.在成功的检测出人脸区域后,将识别出的人脸区域截取成图片,储存起来,用作后续的训练数据. 3.在获取到了足够多的数据后,搭建CNN网络进行训练. 5.训练完成后,将模型存储起来. 6.在利用Opencv实时读取视频流,将检测出人脸的区域变成图片放入模型中进行预测. 以上就是这个项目的一个基本的思路了. 1.利用Opencv检测人脸的代码如下,这个代码在Ope

  • kaggle+mnist实现手写字体识别

    现在的许多手写字体识别代码都是基于已有的mnist手写字体数据集进行的,而kaggle需要用到网站上给出的数据集并生成测试集的输出用于提交.这里选择keras搭建卷积网络进行识别,可以直接生成测试集的结果,最终结果识别率大概97%左右的样子. # -*- coding: utf-8 -*- """ Created on Tue Jun 6 19:07:10 2017 @author: Administrator """ from keras.mo

  • python深度学习tensorflow卷积层示例教程

    目录 一.旧版本(1.0以下)的卷积函数:tf.nn.conv2d 二.1.0版本中的卷积函数:tf.layers.conv2d 一.旧版本(1.0以下)的卷积函数:tf.nn.conv2d 在tf1.0中,对卷积层重新进行了封装,比原来版本的卷积层有了很大的简化. conv2d( input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None ) 该函数定义在tensorflow/pytho

  • keras中模型训练class_weight,sample_weight区别说明

    keras 中fit(self, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None) 官方文档

  • 对Keras中predict()方法和predict_classes()方法的区别说明

    1 predict()方法 当使用predict()方法进行预测时,返回值是数值,表示样本属于每一个类别的概率,我们可以使用numpy.argmax()方法找到样本以最大概率所属的类别作为样本的预测标签. 2 predict_classes()方法 当使用predict_classes()方法进行预测时,返回的是类别的索引,即该样本所属的类别标签.以卷积神经网络中的图片分类为例说明,代码如下: 补充知识:keras中model.evaluate.model.predict和model.predi

  • 浅谈cv2.imread()和keras.preprocessing中的image.load_img()区别

    1.image.load_img() from keras.preprocessing import image img_keras = image.load_img('./original/dog/880.jpg') print(img_keras) img_keras = image.img_to_array(img_keras) print(img_keras[:,1,1]) 效果如下: <PIL.JpegImagePlugin.JpegImageFile image mode=RGB s

随机推荐