基于Pytorch实现逻辑回归

本文实例为大家分享了Pytorch实现逻辑回归的具体代码,供大家参考,具体内容如下

1.逻辑回归

线性回归表面上看是“回归问题”,实际上处理的问题是“分类”问题,逻辑回归模型是一种广义的回归模型,其与线性回归模型有很多的相似之处,模型的形式也基本相同,唯一不同的地方在于逻辑回归会对y作用一个逻辑函数,将其转化为一种概率的结果。逻辑函数也称为Sigmoid函数,是逻辑回归的核心。

2.基于Pytorch实现逻辑回归

import torch as t
import matplotlib.pyplot as plt
from torch import nn
from torch.autograd import Variable
import numpy as np
 
 
# 构造数据集
n_data = t.ones(100, 2)
# normal()返回一个张量,张量里面的随机数是从相互独立的正态分布中随机生成的。
x0 = t.normal(2*n_data, 1)
y0 = t.zeros(100)
x1 = t.normal(-2*n_data, 1)
y1 = t.ones(100)
 
# 把数据给合并以下,并且数据的形式必须是下面形式
x = t.cat((x0, x1), 0).type(t.FloatTensor)
y = t.cat((y0, y1), 0).type(t.FloatTensor)
 
# 观察制造的数据
plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0)
plt.show()
 
# 建立逻辑回归
class LogisticRegression(nn.Module):
    def __init__(self):
        super(LogisticRegression, self).__init__()
        self.lr = nn.Linear(2, 1)
        self.sm = nn.Sigmoid()
    def forward(self, x):
        x = self.lr(x)
        x = self.sm(x)
        return x
# 实例化
logistic_model = LogisticRegression()
# 看GPU是否可使用,如果可以使用GPU否则不使用
if t.cuda.is_available():
    logistic_model.cuda()
# 定义损失函数和优化函数
criterion = nn.BCELoss()
optimizer = t.optim.SGD(logistic_model.parameters(), lr=1e-3, momentum=0.9)
# 训练模型
for epoch in range(1000):
    if t.cuda.is_available():
        x_data = Variable(x).cuda()
        y_data = Variable(y).cuda()
    else:
        x_data = Variable(x)
        y_data = Variable(y)
        out = logistic_model(x_data)
        loss = criterion(out, y_data)
        print_loss = loss.data.item()
        # 以0.5为阈值进行分类
        mask = out.ge(0.5).float()
        # 计算正确预测样本的个数
        correct = (mask==y_data).sum()
        # 计算精度
        acc = correct.item()/x_data.size(0)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        # 每个200个epoch打印一次当前的误差和精度
        if(epoch+1)%200==0:
            print('*'*10)
            # 迭代次数
            print('epoch{}'.format(epoch+1))
            # 误差
            print('loss is {:.4f}'.format((print_loss)))
            # 精度
            print('acc is {:.4f}'.format(acc))
if __name__=="__main__":
    logistic_model.eval()
    w0, w1 = logistic_model.lr.weight[0]
    w0 = float(w0.item())
    w1 = float(w1.item())
    b = float(logistic_model.lr.bias.item())
    plot_x = np.arange(-7, 7, 0.1)
    plot_y = (-w0*plot_x-b)/w1
    plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0)
    plt.plot(plot_x, plot_y)
    plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python代码实现逻辑回归logistic原理

    Logistic Regression Classifier逻辑回归主要思想就是用最大似然概率方法构建出方程,为最大化方程,利用牛顿梯度上升求解方程参数. 优点:计算代价不高,易于理解和实现. 缺点:容易欠拟合,分类精度可能不高. 使用数据类型:数值型和标称型数据. 介绍逻辑回归之前,我们先看一问题,有个黑箱,里面有白球和黑球,如何判断它们的比例. 我们从里面抓3个球,2个黑球,1个白球.这时候,有人就直接得出了黑球67%,白球占比33%.这个时候,其实这个人使用了最大似然概率的思想,通俗来讲,

  • Python利用逻辑回归分类实现模板

    Logistic Regression Classifier逻辑回归主要思想就是用最大似然概率方法构建出方程,为最大化方程,利用牛顿梯度上升求解方程参数. 优点:计算代价不高,易于理解和实现. 缺点:容易欠拟合,分类精度可能不高. 使用数据类型:数值型和标称型数据. 好了,下面开始正文. 算法的思路我就不说了,我就提供一个万能模板,适用于任何纬度数据集. 虽然代码类似于梯度下降,但他是个分类算法 定义sigmoid函数 def sigmoid(x): return 1/(1+np.exp(-x)

  • python编写Logistic逻辑回归

    用一条直线对数据进行拟合的过程称为回归.逻辑回归分类的思想是:根据现有数据对分类边界线建立回归公式. 公式表示为: 一.梯度上升法 每次迭代所有的数据都参与计算. for 循环次数:         训练 代码如下: import numpy as np import matplotlib.pyplot as plt def loadData(): labelVec = [] dataMat = [] with open('testSet.txt') as f: for line in f.re

  • Python实现的逻辑回归算法示例【附测试csv文件下载】

    本文实例讲述了Python实现的逻辑回归算法.分享给大家供大家参考,具体如下: 使用python实现逻辑回归 Using Python to Implement Logistic Regression Algorithm 菜鸟写的逻辑回归,记录一下学习过程 代码: #encoding:utf-8 """ Author: njulpy Version: 1.0 Data: 2018/04/10 Project: Using Python to Implement Logisti

  • python 牛顿法实现逻辑回归(Logistic Regression)

    本文采用的训练方法是牛顿法(Newton Method). 代码 import numpy as np class LogisticRegression(object): """ Logistic Regression Classifier training by Newton Method """ def __init__(self, error: float = 0.7, max_epoch: int = 100): ""

  • python机器学习理论与实战(四)逻辑回归

    从这节算是开始进入"正规"的机器学习了吧,之所以"正规"因为它开始要建立价值函数(cost function),接着优化价值函数求出权重,然后测试验证.这整套的流程是机器学习必经环节.今天要学习的话题是逻辑回归,逻辑回归也是一种有监督学习方法(supervised machine learning).逻辑回归一般用来做预测,也可以用来做分类,预测是某个类别^.^!线性回归想比大家都不陌生了,y=kx+b,给定一堆数据点,拟合出k和b的值就行了,下次给定X时,就可以计

  • python实现逻辑回归的方法示例

    本文实现的原理很简单,优化方法是用的梯度下降.后面有测试结果. 先来看看实现的示例代码: # coding=utf-8 from math import exp import matplotlib.pyplot as plt import numpy as np from sklearn.datasets.samples_generator import make_blobs def sigmoid(num): ''' :param num: 待计算的x :return: sigmoid之后的数

  • python sklearn库实现简单逻辑回归的实例代码

    Sklearn简介 Scikit-learn(sklearn)是机器学习中常用的第三方模块,对常用的机器学习方法进行了封装,包括回归(Regression).降维(Dimensionality Reduction).分类(Classfication).聚类(Clustering)等方法.当我们面临机器学习问题时,便可根据下图来选择相应的方法. Sklearn具有以下特点: 简单高效的数据挖掘和数据分析工具 让每个人能够在复杂环境中重复使用 建立NumPy.Scipy.MatPlotLib之上 代

  • PyTorch线性回归和逻辑回归实战示例

    线性回归实战 使用PyTorch定义线性回归模型一般分以下几步: 1.设计网络架构 2.构建损失函数(loss)和优化器(optimizer) 3.训练(包括前馈(forward).反向传播(backward).更新模型参数(update)) #author:yuquanle #data:2018.2.5 #Study of LinearRegression use PyTorch import torch from torch.autograd import Variable # train

  • Python利用逻辑回归模型解决MNIST手写数字识别问题详解

    本文实例讲述了Python利用逻辑回归模型解决MNIST手写数字识别问题.分享给大家供大家参考,具体如下: 1.MNIST手写识别问题 MNIST手写数字识别问题:输入黑白的手写阿拉伯数字,通过机器学习判断输入的是几.可以通过TensorFLow下载MNIST手写数据集,通过import引入MNIST数据集并进行读取,会自动从网上下载所需文件. %matplotlib inline import tensorflow as tf import tensorflow.examples.tutori

随机推荐