Netty分布式NioSocketChannel注册到selector方法解析

目录

我们回到最初的NioMessageUnsafe的read()方法:

public void read() {
    //必须是NioEventLoop方法调用的, 不能通过外部线程调用
    assert eventLoop().inEventLoop();
    //服务端channel的config
    final ChannelConfig config = config();
    //服务端channel的pipeline
    final ChannelPipeline pipeline = pipeline();
    //处理服务端接入的速率
    final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();
    //设置配置
    allocHandle.reset(config);
    boolean closed = false;
    Throwable exception = null;
    try {
        try {
            do {
                //创建jdk底层的channel
                //readBuf用于临时承载读到链接
                int localRead = doReadMessages(readBuf);
                if (localRead == 0) {
                    break;
                }
                if (localRead < 0) {
                    closed = true;
                    break;
                }
                //分配器将读到的链接进行计数
                allocHandle.incMessagesRead(localRead);
                //连接数是否超过最大值
            } while (allocHandle.continueReading());
        } catch (Throwable t) {
            exception = t;
        }
        int size = readBuf.size();
        //遍历每一条客户端连接
        for (int i = 0; i < size; i ++) {
            readPending = false;
            //传递事件, 将创建NioSokectChannel进行传递
            //最终会调用ServerBootstrap的内部类ServerBootstrapAcceptor的channelRead()方法
            pipeline.fireChannelRead(readBuf.get(i));
        }
        readBuf.clear();
        allocHandle.readComplete();
        pipeline.fireChannelReadComplete();
        //代码省略
    } finally {
        //代码省略
    }
}

在while循环结束之后, 将会通过一个for循环遍历readBuf集合, 并将创建的NioSocketChannel传入fireChannelRead()中, 传播channel的读取事件

有关pipeline的知识, 我们下一章会详细剖析, 并会根据剖析后的内容回顾之前的有关pipeline的操作, 这里我们只需知道, 通过fireChannelRead()我们最终调用了ServerBootstrap的内部类ServerBootstrapAcceptor 中的channelRead()方法

跟到channelRead()方法中:

public void channelRead(ChannelHandlerContext ctx, Object msg) {
    final Channel child = (Channel) msg;
    //代码省略
    try {
        //work线程注册channel
        childGroup.register(child).addListener(new ChannelFutureListener() {
            @Override
            public void operationComplete(ChannelFuture future) throws Exception {
                if (!future.isSuccess()) {
                    forceClose(child, future.cause());
                }
            }
        });
    } catch (Throwable t) {
        forceClose(child, t);
    }
}

其中参数的msg就是最初传入fireChannelRead()方法的NioSocketChannel

所以这里可以通过 final Channel child = (Channel) msg 这种方式拿到NioSocketChannel

其中childGroup是我们最初初始化的work线程, 这里的register()方法跟boss线程一样, 通过next()方法获选择一个线程进行注册, 这里不再赘述

我们紧跟调用链, 跟到SingleThreadEventLoop的register()方法:

public ChannelFuture register(final ChannelPromise promise) {
    ObjectUtil.checkNotNull(promise, "promise");
    promise.channel().unsafe().register(this, promise);
    return promise;
}

这里的unsafe(), 根据我们之前的剖析, 是NioByteUnsafe, 这里的register最终会调用AbstractUnsafe的register()方法, 并NioSocketChannel

不知道同学们是否记得, 当初NioServerSocketChannel注册的时候也走的这个方法

我们跟到register()这个方法中:

public final void register(EventLoop eventLoop, final ChannelPromise promise) {
    //省略验证代码
    //所有的复制操作, 都交给eventLoop处理
    AbstractChannel.this.eventLoop = eventLoop;

    if (eventLoop.inEventLoop()) {
        //做实际主注册
        register0(promise);
    } else {
        try {
            eventLoop.execute(new Runnable() {
                @Override
                public void run() {
                    register0(promise);
                }
            });
        } catch (Throwable t) {
            //代码省略
        }
    }
}

我们学习过NioEventLoop相关知识之后, 应该对这部分代码不太陌生, 首先判断是不是当前NioEventLoop线程, 如果是, 则直接进行注册操作, 如果不是, 则封装成task在当前NioEventLoop中执行

走到这里不难明白, 这里并不是当前NioEventLoop线程, 这是boss线程执行的, 所以这里会走到else, 如果是第一次的连接操作, work线程的NioEventLoop并没有启动, 所以这里也会启动NioEventLoop, 并开始轮询操作

跟到register0(promise)中看其是如何做实际操作的:

private void register0(ChannelPromise promise) {
    try {
        //省略代码
        //做实际的注册
        doRegister();
        neverRegistered = false;
        registered = true;
        //触发事件
        pipeline.invokeHandlerAddedIfNeeded();
        safeSetSuccess(promise);
        //触发注册成功事件
        pipeline.fireChannelRegistered();
        if (isActive()) {
            if (firstRegistration) {
                //传播active事件(4)
                pipeline.fireChannelActive();
            } else if (config().isAutoRead()) {
                beginRead();
            }
        }
    } catch (Throwable t) {
        //省略代码
    }
}

这段代码我们同样并不陌生, 因为NioServerSokectChannel中也走这一部分, 我们继续关注doRegister()方法:

protected void doRegister() throws Exception {
    boolean selected = false;
    for (;;) {
        try {
            //jdk底层的注册方法
            //第一个参数为selector, 第二个参数表示不关心任何事件
            selectionKey = javaChannel().register(eventLoop().selector, 0, this);
            return;
        } catch (CancelledKeyException e) {
            //省略代码
        }
    }
}

这部分也是我们之前剖析过的jdk底层的注册, 只是不同的是, 这里的javaChannel()是SocketChanel而不是ServerSocketChannel

同样, 这里也是表示不关心任何事件, 只是在当前NioEventLoop绑定的selector上注册

至此, NioSocketChannel完成注册

以上就是Netty代码跟踪NioSocketChannel注册到selector的详细内容,更多关于NioSocketChannel注册到selector的资料请关注我们其它相关文章!

(0)

相关推荐

  • Netty源码分析NioEventLoop执行select操作入口

    分析完了selector的创建和优化的过程, 这一小节分析select相关操作 select操作的入口,NioEventLoop的run方法: protected void run() { for (;;) { try { switch (selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())) { case SelectStrategy.CONTINUE: continue; case SelectStrategy.SEL

  • Netty客户端接入流程NioSocketChannel创建解析

    目录 NioSocketChannel的创建 回到上一小节的read()方法 我们首先看readBuf jdk底层相关的内容 跟到父类构造方法中 我们跟进其构造方法 前文传送门:Netty客户端处理接入事件handle创建 NioSocketChannel的创建 回到上一小节的read()方法 public void read() { //必须是NioEventLoop方法调用的, 不能通过外部线程调用 assert eventLoop().inEventLoop(); //服务端channel

  • Netty分布式NioEventLoop任务队列执行源码分析

    目录 执行任务队列 跟进runAllTasks方法: 我们跟进fetchFromScheduledTaskQueue()方法 回到runAllTasks(long timeoutNanos)方法中 章节小结 前文传送门:NioEventLoop处理IO事件 执行任务队列 继续回到NioEventLoop的run()方法: protected void run() { for (;;) { try { switch (selectStrategy.calculateStrategy(selectN

  • Netty分布式客户端接入流程初始化源码分析

    目录 前文概述: 第一节:初始化NioSockectChannelConfig 创建channel 跟到其父类DefaultChannelConfig的构造方法中 再回到AdaptiveRecvByteBufAllocator的构造方法中 继续跟到ChannelMetadata的构造方法中 回到DefaultChannelConfig的构造方法 前文概述: 之前的章节学习了server启动以及eventLoop相关的逻辑, eventLoop轮询到客户端接入事件之后是如何处理的?这一章我们循序渐

  • Netty分布式客户端处理接入事件handle源码解析

    目录 处理接入事件创建handle 我们看其RecvByteBufAllocator接口 跟进newHandle()方法中 继续回到read()方法 我们跟进reset中 前文传送门 :客户端接入流程初始化源码分析 上一小节我们剖析完成了与channel绑定的ChannelConfig初始化相关的流程, 这一小节继续剖析客户端连接事件的处理 处理接入事件创建handle 回到上一章NioEventLoop的processSelectedKey ()方法 private void processS

  • Netty分布式NioSocketChannel注册到selector方法解析

    目录 我们回到最初的NioMessageUnsafe的read()方法: public void read() { //必须是NioEventLoop方法调用的, 不能通过外部线程调用 assert eventLoop().inEventLoop(); //服务端channel的config final ChannelConfig config = config(); //服务端channel的pipeline final ChannelPipeline pipeline = pipeline(

  • Netty分布式ByteBuf缓冲区分配器源码解析

    目录 缓冲区分配器 以其中的分配ByteBuf的方法为例, 对其做简单的介绍 跟到directBuffer()方法中 我们回到缓冲区分配的方法 然后通过validate方法进行参数验证 缓冲区分配器 顾明思议就是分配缓冲区的工具, 在netty中, 缓冲区分配器的顶级抽象是接口ByteBufAllocator, 里面定义了有关缓冲区分配的相关api 抽象类AbstractByteBufAllocator实现了ByteBufAllocator接口, 并且实现了其大部分功能 和AbstractByt

  • Netty分布式行解码器逻辑源码解析

    目录 行解码器LineBasedFrameDecoder 首先看其参数 我们跟到重载的decode方法中 我们看findEndOfLine(buffer)方法 这一小节了解下行解码器LineBasedFrameDecoder, 行解码器的功能是一个字节流, 以\r\n或者直接以\n结尾进行解码, 也就是以换行符为分隔进行解析 同样, 这个解码器也继承了ByteToMessageDecoder 行解码器LineBasedFrameDecoder 首先看其参数 //数据包的最大长度, 超过该长度会进

  • Netty启动流程注册多路复用源码解析

    目录 注册多路复用 注册channel的步骤 首先看下config()方法 回到initAndRegister()方法: 跟到MultithreadEventLoopGroup的register()方法: 回顾下第二小节channel初始化的步骤: 我们继续看看register()方法: 我们重点关注register0(promise), 跟进去: 我们重点关注doRegister()这个方法 前文传送门:Netty启动流程服务端channel初始化 注册多路复用 回到上一小节的代码: fina

  • Netty分布式源码分析监听读事件

    前文传送门:NioSocketChannel注册到selector 我们回到AbstractUnsafe的register0()方法: private void register0(ChannelPromise promise) { try { //省略代码 //做实际的注册 doRegister(); neverRegistered = false; registered = true; //触发事件 pipeline.invokeHandlerAddedIfNeeded(); safeSet

  • Netty启动步骤绑定端口示例方法源码分析

    目录 绑定端口 我们继续跟第一小节的最初的doBind()方法 第二步, 获得channel 重点关注下doBind(localAddress)方法 最终会走到这一步, pipeline.fireChannelActive() 章节总结 前文传送门:Netty启动流程注册多路复用源码解析 绑定端口 上一小节我们学习了channel注册在selector的步骤, 仅仅做了注册但并没有监听事件, 事件是如何监听的呢? 我们继续跟第一小节的最初的doBind()方法 private ChannelFu

  • Netty分布式NioEventLoop优化selector源码解析

    目录 优化selector selector的创建过程 代码剖析 这里一步创建了这个优化后的数据结构 最后返回优化后的selector 优化selector selector的创建过程 在剖析selector轮询之前, 我们先讲解一下selector的创建过程 回顾之前的小节, 在创建NioEventLoop中初始化了唯一绑定的selector: NioEventLoop(NioEventLoopGroup parent, Executor executor, SelectorProvider

  • Netty分布式pipeline管道创建方法跟踪解析

    目录 概述 pipeline的创建 上一章节回顾:Netty分布式源码分析监听读事件 概述 pipeline, 顾名思义, 就是管道的意思, 在netty中, 事件在pipeline中传输, 用户可以中断事件, 添加自己的事件处理逻辑, 可以直接将事件中断不再往下传输, 同样可以改变管道的流向, 传递其他事件.这里有点类似于Spring的AOP, 但是比AOP实现起来简单的多 事件通常分为两种, 一是inBound事件, 另一种是outBound事件, inBound事件, 顾名思义, 就是从另

  • Netty分布式pipeline管道Handler的添加代码跟踪解析

    目录 添加handler 我们跟到其addLast()方法中 再继续跟到addLast()方法中去 我们跟到checkMultiplicity(handler)中 跟到filterName方法中 跟到isInbound(handler)方法中 我们回到最初的addLast()方法中 我们跟进addLast0(newCtx)中 前文传送门:Netty分布式pipeline管道创建 添加handler 我们以用户代码为例进行剖析: .childHandler(new ChannelInitializ

随机推荐