Android中的Coroutine协程原理解析

前言

协程是一个并发方案。也是一种思想。

传统意义上的协程是单线程的,面对io密集型任务他的内存消耗更少,进而效率高。但是面对计算密集型的任务不如多线程并行运算效率高。

不同的语言对于协程都有不同的实现,甚至同一种语言对于不同平台的操作系统都有对应的实现。

我们kotlin语言的协程是 coroutines for jvm的实现方式。底层原理也是利用java 线程。

基础知识

生态架构

相关依赖库

dependencies {
   // Kotlin
   implementation "org.jetbrains.kotlin:kotlin-stdlib:1.4.32"
   // 协程核心库
   implementation "org.jetbrains.kotlinx:kotlinx-coroutines-core:1.4.3"
   // 协程Android支持库
   implementation "org.jetbrains.kotlinx:kotlinx-coroutines-android:1.4.3"
   // 协程Java8支持库
   implementation "org.jetbrains.kotlinx:kotlinx-coroutines-jdk8:1.4.3"
   // lifecycle对于协程的扩展封装
   implementation "androidx.lifecycle:lifecycle-viewmodel-ktx:2.2.0"
   implementation "androidx.lifecycle:lifecycle-runtime-ktx:2.2.0"
   implementation "androidx.lifecycle:lifecycle-livedata-ktx:2.2.0"
}

为什么一些人总觉得协程晦涩难懂?

1.网络上没有详细的关于协程的概念定义,每种语言、每个系统对其实现都不一样。可谓是众说纷纭,什么内核态用户态巴拉巴拉,很容易给我们带偏

2.kotlin的各种语法糖对我们造成的干扰。如:

  • 高阶函数
  • 源码实现类找不到

所以扎实的kotlin语法基本功是学习协程的前提。

实在看不懂得地方就反编译为java,以java最终翻译为准。

协程是什么?有什么用?

kotlin中的协程干的事就是把异步回调代码拍扁了,捋直了,让异步回调代码同步化。除此之外,没有任何特别之处。

创建一个协程,就是编译器背后偷偷生成一系列代码,比如说状态机。

通过挂起和恢复让状态机状态流转实现把层层嵌套的回调代码变成像同步代码那样直观、简洁。

它不是什么线程框架,也不是什么高深的内核态,用户态。它其实对于咱们安卓来说,就是一个关于回调函数的语法糖。。。

本文将会围绕挂起与恢复彻底剖析协程的实现原理

Kotlin函数基础知识复习

再Kotlin中函数是一等公民,有自己的类型

函数类型

fun foo(){}
//类型为 () -> Unit
fun foo(p: Int){}
//类型为 (Int) -> String
class Foo{
    fun bar(p0: String,p1: Long):Any{}

}
//那么 bar 的类型为:Foo.(String,Long) -> Any
//Foo就是bar的 receiver。也可以写成 (Foo,String,Long) ->Any

函数引用

fun foo(){}
//引用是 ::foo
fun foo(p0: Int): String
//引用也是 ::foo

咋都一样?没办法,就这样规定的。使用的时候 只能靠编译器推断

val f: () -> Unit = ::foo //编译器会推断出是fun foo(){}
val g: (Int) -> String = ::foo //推断为fun foo(p0: Int): String

带Receiver的写法

class Foo{
    fun bar(p0: String,p1: Long):Any{}
}
val h: (Foo,String,Long) -> Any = Foo:bar

绑定receiver的函数引用:

val foo: Foo = Foo()
val m: (String,Long) -> Any = foo:bar

额外知识点

val x: (Foo,String,Long) -> Any = Foo:bar
val y: Function3<Foo,String,Long,Any> = x
Foo.(String,Long) -> Any = (Foo,String,Long) ->Any = Function3<Foo,String,Long,Any>

函数作为参数传递

fun yy(p: (Foo,String,Long)->Any){
	p(Foo(),"Hello",3L)//直接p()就能调用
    //p.invoke(Foo(),"Hello",3L) 也可以用invoke形式
}

Lambda

就是匿名函数,它跟普通函数比是没有名字的,听起来好像是废话

//普通函数
fun func(){
   println("hello");
}
​
//去掉函数名 func,就成了匿名函数
fun(){
   println("hello");
//可以赋值给一个变量
val func = fun(){
//匿名函数的类型
val func :()->Unit = fun(){
//Lambda表达式
val func={
   print("Hello");
//Lambda类型
val func :()->String = {
print("Hello");
"Hello" //如果是Lambda中,最后一行被当作返回值,能省掉return。普通函数则不行
//带参数Lambda
val f1: (Int)->Unit = {p:Int ->
print(p);
//可进一步简化为
val f1 = {p:Int ->
print(p);
//当只有一个参数的时候,还可以写成
val f1: (Int)->Unit = {
   print(it);

关于函数的个人经验总结

函数跟匿名函数看起来没啥区别,但是反编译为java后还是能看出点差异

如果只是用普通的函数,那么他跟普通java 函数没啥区别。

比如 fun a() 就是对应java方法public void a(){}

但是如果通过函数引用(:: a)来用这个函数,那么他并不是直接调用fun a()而是重新生成一个Function0

挂起函数

suspend 修饰。

挂起函数中能调用任何函数。

非挂起函数只能调用非挂起函数。

换句话说,suspend函数只能在suspend函数中调用。

简单的挂起函数展示:

//com.example.studycoroutine.chapter.CoroutineRun.kt
suspend fun suspendFun(): Int {
    return 1;
}

挂起函数特殊在哪?

public static final Object suspendFun(Continuation completion) {
    return Boxing.boxInt(1);
}

这下理解suspend为啥只能在suspend里面调用了吧?

想要让道貌岸然的suspend函数干活必须要先满足它!!!就是给它里面塞入一颗球。

然后他想调用其他的suspend函数,只需将球继续塞到其它的suspend方法里面。

普通函数里没这玩意啊,所以压根没法调用suspend函数。。。

读到这里,想必各位会有一些疑问:

  • question1.这不是鸡生蛋生鸡的问题么?第一颗球是哪来的?
  • question2.为啥编译后返回值也变了?
  • question3.suspendFun 如果在协程体内被调用,那么他的球(completion)是谁?

标准库给我们提供的最原始工具

public fun <T> (suspend () -> T).startCoroutine(completion: Continuation<T>) {
   createCoroutineUnintercepted(completion).intercepted().resume(Unit)
}
​
public fun <T> (suspend () -> T).createCoroutine(completion: Continuation<T>): Continuation<Unit> =
   SafeContinuation(createCoroutineUnintercepted(completion).intercepted(), COROUTINE_SUSPENDED)

以一个最简单的方式启动一个协程。

Demo-K1

fun main() {
   val b = suspend {
       val a = hello2()
       a
  }
   b.createCoroutine(MyCompletionContinuation()).resume(Unit)
}
​
suspend fun hello2() = suspendCoroutine<Int> {
   thread{
       Thread.sleep(1000)
       it.resume(10086)
class MyContinuation() : Continuation<Int> {
   override val context: CoroutineContext = CoroutineName("Co-01")
   override fun resumeWith(result: Result<Int>) {
       log("MyContinuation resumeWith 结果 = ${result.getOrNull()}")

两个创建协程函数区别

startCoroutine 没有返回值 ,而createCoroutine返回一个Continuation,不难看出是SafeContinuation

好像看起来主要的区别就是startCoroutine直接调用resume(Unit),所以不用包装成SafeContinuation,而createCoroutine则返回一个SafeContinuation,因为不知道将会在何时何处调用resume,必须保证resume只调用一次,所以包装为safeContinuation

SafeContinuationd的作用是为了确保只有发生异步调用时才挂起

分析createCoroutineUnintercepted

//kotlin.coroutines.intrinsics.CoroutinesIntrinsicsH.kt
@SinceKotlin("1.3")
public expect fun <T> (suspend () -> T).createCoroutineUnintercepted(completion: Continuation<T>): Continuation<Unit>

先说结论

其实可以简单的理解为kotlin层面的原语,就是返回一个协程体。

开始分析

引用代码Demo-K1首先b 是一个匿名函数,他肯定要被编译为一个FunctionX,同时它还被suspend修饰 所以它肯定跟普通匿名函数编译后不一样。

编译后的源码为

public static final void main() {
     Function1 var0 = (Function1)(new Function1((Continuation)null) {
        int label;
​
        @Nullable
        public final Object invokeSuspend(@NotNull Object $result) {
           Object var3 = IntrinsicsKt.getCOROUTINE_SUSPENDED();
           Object var10000;
           switch(this.label) {
           case 0:
              ResultKt.throwOnFailure($result);
              this.label = 1;
              var10000 = TestSampleKt.hello2(this);
              if (var10000 == var3) {
                 return var3;
              }
              break;
           case 1:
              var10000 = $result;
           default:
              throw new IllegalStateException("call to 'resume' before 'invoke' with coroutine");
          }
           int a = ((Number)var10000).intValue();
           return Boxing.boxInt(a);
        }
        @NotNull
        public final Continuation create(@NotNull Continuation completion) {
           Intrinsics.checkParameterIsNotNull(completion, "completion");
           Function1 var2 = new <anonymous constructor>(completion);
           return var2;
        public final Object invoke(Object var1) {
           return((<undefinedtype>)this.create((Continuation)var1)).invokeSuspend(Unit.INSTANCE);
    });
     boolean var1 = false;
     Continuation var7 = ContinuationKt.createCoroutine(var0, (Continuation)(newMyContinuation()));
     Unit var8 = Unit.INSTANCE;
     boolean var2 = false;
     Companion var3 = Result.Companion;
     boolean var5 = false;
     Object var6 = Result.constructor-impl(var8);
     var7.resumeWith(var6);
  }

我们可以看到先是 Function1 var0 = new Function1创建了一个对象,此时跟协程没关系,这步只是编译器层面的匿名函数语法优化

如果直接

fun main() {
   suspend {
       val a = hello2()
       a
  }.createCoroutine(MyContinuation()).resume(Unit)
}

也是一样会创建Function1 var0 = new Function1

解答question1

继续调用createCoroutine

再继续createCoroutineUnintercepted ,找到在JVM平台的实现

//kotlin.coroutines.intrinsics.IntrinsicsJVM.class
@SinceKotlin("1.3")
public actual fun <T> (suspend () -> T).createCoroutineUnintercepted(
   completion: Continuation<T>
): Continuation<Unit> {
//probeCompletion还是我们传入completion对象,在我们的Demo就是myCoroutine
   val probeCompletion = probeCoroutineCreated(completion)//probeCoroutineCreated方法点进去看了,好像是debug用的.我的理解是这样的
   //This就是这个suspend lambda。在Demo中就是myCoroutineFun
   return if (this is BaseContinuationImpl)
       create(probeCompletion)
   else
//else分支在我们demo中不会走到
     //当 [createCoroutineUnintercepted] 遇到不继承 BaseContinuationImpl 的挂起 lambda 时,将使用此函数。
       createCoroutineFromSuspendFunction(probeCompletion) {
          (this as Function1<Continuation<T>, Any?>).invoke(it)
      }
}
@NotNull
public final Continuation create(@NotNull Continuation completion) {
Intrinsics.checkNotNullParameter(completion, "completion");
Function1 var2 = new <anonymous constructor>(completion);
return var2;
}

把completion传入,并创建一个新的Function1,作为Continuation返回,这就是创建出来的协程体对象,协程的工作核心就是它内部的状态机,invokeSuspend函数

调用 create

@NotNull
public final Continuation create(@NotNull Continuation completion) {
	Intrinsics.checkNotNullParameter(completion, "completion");
	Function1 var2 = new <anonymous constructor>(completion);
	return var2;
}

把completion传入,并创建一个新的Function1,作为Continuation返回,这就是创建出来的协程体对象,协程的工作核心就是它内部的状态机,invokeSuspend函数

补充---相关类继承关系

解答question2&3

已知协程启动会调用协程体的resume,该调用最终会来到BaseContinuationImpl::resumeWith

internal abstract class BaseContinuationImpl{
   fun resumeWith(result: Result<Any?>) {
          // This loop unrolls recursion in current.resumeWith(param) to make saner and shorter stack traces on resume
       var current = this
       var param = result
       while (true) {
           with(current) {
               val completion = completion!! // fail fast when trying to resume continuation without completion
               val outcome: Result<Any?> =
                   try {
                       val outcome = invokeSuspend(param)//调用状态机
                       if (outcome === COROUTINE_SUSPENDED) return
                       Result.success(outcome)
                  } catch (exception: Throwable) {
                       Result.failure(exception)
                  }
               releaseIntercepted() // this state machine instance is terminating
               if (completion is BaseContinuationImpl) {
                   // unrolling recursion via loop
                   current = completion
                   param = outcome
              } else {
                   //最终走到这里,这个completion就是被塞的第一颗球。
                   completion.resumeWith(outcome)
                   return
              }
          }
      }
  }
}

状态机代码截取

public final Object invokeSuspend(@NotNull Object $result) {
   Object var3 = IntrinsicsKt.getCOROUTINE_SUSPENDED();
   Object var10000;
   switch(this.label) {
   case 0://第一次进来 label = 0
      ResultKt.throwOnFailure($result);
      // label改成1了,意味着下一次被恢复的时候会走case 1,这就是所谓的【状态流转】
      this.label = 1;
      //全体目光向我看齐,我宣布个事:this is 协程体对象。
      var10000 = TestSampleKt.hello2(this);
      if (var10000 == var3) {
         return var3;
      }
      break;
   case 1:
      ResultKt.throwOnFailure($result);
      var10000 = $result;
      break;
   default:
      throw new IllegalStateException("call to 'resume' before 'invoke' with coroutine");
   }

   int a = ((Number)var10000).intValue();
   return Boxing.boxInt(a);
}

question3答案出来了,传进去的是create创建的那个continuation

最后再来聊聊question2,从上面的代码已经很清楚的告诉我们为啥挂起函数反编译后的返回值变为object了。

以hello2为例子,hello2能返回代表挂起的白板,也能返回result。如果返回白板,状态机return,协程挂起。如果返回result,那么hello2执行完毕,是一个没有挂起的挂起函数,通常编译器也会提醒 suspend 修饰词无意义。所以这就是设计需要,没有啥因为所以。

最后,除了直接返回结果的情况,挂起函数一定会以resume结尾,要么返回result,要么返回异常。代表这个挂起函数返回了。

调用resume意义在于重新回调BaseContinuationImpl的resumeWith,进而唤醒状态机,继续执行协程体的代码。

换句话说,我们自定义的suspend函数,一定要利用suspendCoroutine 获得续体,即状态机对象,否则无法实现真正的挂起与resume。

suspendCoroutine

我们可以不用suspendCoroutine,用更直接的suspendCoroutineUninterceptedOrReturn也能实现,不过这种方式要手动返回白板。不过一定要小心,要在合理的情况下返回或者不返回,不然会产生很多意想不到的结果

suspend fun mySuspendOne() = suspendCoroutineUninterceptedOrReturn<String> { continuation ->
    thread {
        TimeUnit.SECONDS.sleep(1)
        continuation.resume("hello world")
    }
    //因为我们这个函数没有返回正确结果,所以必须返回一个挂起标识,否则BaseContinuationImpl会认为完成了任务。
    // 并且我们的线程又在运行没有取消,这将很多意想不到的结果
    kotlin.coroutines.intrinsics.COROUTINE_SUSPENDED
}

而suspendCoroutine则没有这个隐患

suspend fun mySafeSuspendOne() = suspendCoroutine<String> { continuation ->
    thread {
        TimeUnit.SECONDS.sleep(1)
        continuation.resume("hello world")
    }
    //suspendCoroutine函数很聪明的帮我们判断返回结果如果不是想要的对象,自动返
    kotlin.coroutines.intrinsics.COROUTINE_SUSPENDED
}
public suspend inline fun <T> suspendCoroutine(crossinline block: (Continuation<T>) -> Unit): T =
    suspendCoroutineUninterceptedOrReturn { c: Continuation<T> ->
    	//封装一个代理Continuation对象
        val safe = SafeContinuation(c.intercepted())
        block(safe)
        //根据block返回结果判断要不要返回COROUTINE_SUSPENDED
        safe.getOrThrow()
    }

SafeContinuation的奥秘

//调用单参数的这个构造方法
internal actual constructor(delegate: Continuation<T>) : this(delegate, UNDECIDED)
@Volatile
private var result: Any? = initialResult //UNDECIDED赋值给 result
//java原子属性更新器那一套东西
private companion object {
       @Suppress("UNCHECKED_CAST")
       @JvmStatic
       private val RESULT = AtomicReferenceFieldUpdater.newUpdater<SafeContinuation<*>, Any?>(
           SafeContinuation::class.java, Any::class.java as Class<Any?>, "result"
      )
  }
​
internal actual fun getOrThrow(): Any? {
   var result = this.result // atomic read
   if (result === UNDECIDED) { //如果UNDECIDED,那么就把result设置为COROUTINE_SUSPENDED
       if (RESULT.compareAndSet(this, UNDECIDED, COROUTINE_SUSPENDED)) returnCOROUTINE_SUSPENDED
       result = this.result // reread volatile var
   return when {
       result === RESUMED -> COROUTINE_SUSPENDED // already called continuation, indicate COROUTINE_SUSPENDED upstream
       result is Result.Failure -> throw result.exception
       else -> result // either COROUTINE_SUSPENDED or data <-这里返回白板
}
public actual override fun resumeWith(result: Result<T>) {
       while (true) { // lock-free loop
           val cur = this.result // atomic read。不理解这里的官方注释为啥叫做原子读。我觉得 Volatile只能保证可见性。
           when {
             //这里如果是UNDECIDED 就把 结果附上去。
               cur === UNDECIDED -> if (RESULT.compareAndSet(this, UNDECIDED, result.value)) return
             //如果是挂起状态,就通过resumeWith回调状态机
               cur === COROUTINE_SUSPENDED -> if (RESULT.compareAndSet(this, COROUTINE_SUSPENDED, RESUMED)){
                   delegate.resumeWith(result)
                   return
              }
               else -> throw IllegalStateException("Already resumed")
          }
      }
val safe = SafeContinuation(c.intercepted())
block(safe)
safe.getOrThrow()

先回顾一下什么叫真正的挂起,就是getOrThrow返回了“白板”,那么什么时候getOrThrow能返回白板?答案就是result被初始化后值没被修改过。那么也就是说resumeWith没有被执行过,即:block(safe)这句代码,block这个被传进来的函数,执行过程中没有调用safe的resumeWith。原理就是这么简单,cas代码保证关键逻辑的原子性与并发安全

继续以Demo-K1为例子,这里假设hello2运行在一条新的子线程,否则仍然是没有挂起。

{
   thread{
       Thread.sleep(1000)
       it.resume(10086)
  }
}

总结

最后,可以说开启一个协程,就是利用编译器生成一个状态机对象,帮我们把回调代码拍扁,成为同步代码。

到此这篇关于Android中的Coroutine协程原理详解的文章就介绍到这了,更多相关Android Coroutine原理内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Android使用 Coroutine + Retrofit打造简单的HTTP请求库

    基于 kotlin/coroutine/retrofit/jetpack 打造,100来行代码,用法超级简单舒适 设置默认Retrofit工厂和全局错误处理程序 HttpCall.init(retrofitFactory = { // ... }, errorHandler = { throwable -> // ... }) 基本用法 data class Reault(val data:String) interface TestService { @GET("test")

  • Android结合kotlin使用coroutine的方法实例

    最近入了Android坑,目前还处于疯狂学习的状态,所以很久都没有写博客了.今天记录一个小代码片段,在Android上使用coroutine 的小例子. 由于我自己是做一个记账软件来学习的,我用了gRPC,最开始我是使用线程来做网络请求的: thread { // 网络请求代码 runOnUiThread { // 更新UI的代码 } } 今天把这一套全部重写成用coroutine. 首先coroutine得有个调度器,英文叫做 "Dispatchers",有这么几个: Dispatc

  • Android中的Coroutine协程原理解析

    前言 协程是一个并发方案.也是一种思想. 传统意义上的协程是单线程的,面对io密集型任务他的内存消耗更少,进而效率高.但是面对计算密集型的任务不如多线程并行运算效率高. 不同的语言对于协程都有不同的实现,甚至同一种语言对于不同平台的操作系统都有对应的实现. 我们kotlin语言的协程是 coroutines for jvm的实现方式.底层原理也是利用java 线程. 基础知识 生态架构 相关依赖库 dependencies { // Kotlin implementation "org.jetb

  • java线程池中Worker线程执行流程原理解析

    目录 引言 Worker类分析 runWorker(Worker)方法 getTask()方法 beforeExecute(Thread, Runnable)方法 afterExecute(Runnable, Throwable)方法 processWorkerExit(Worker, boolean)方法 tryTerminate()方法 terminated()方法 引言 在<[高并发]别闹了,这样理解线程池执行任务的核心流程才正确!!>一文中我们深度分析了线程池执行任务的核心流程,在Th

  • Python中Async语法协程的实现

    目录 前记 1.传统的Sync语法请求例子 2.异步的请求 3.基于生成器的协程 3.1生成器 3.2用生成器实现协程 前记 在io比较多的场景中, Async语法编写的程序会以更少的时间, 更少的资源来完成相同的任务, 这篇文章则是介绍了Python的Async语法的协程是如何实现的. 1.传统的Sync语法请求例子 还是一样, 在了解Async语法的实现之前, 先从一个Sync的语法例子开始, 现在假设有一个HTTP请求, 这个程序会通过这个请求获取对应的响应内容, 并打印出来, 代码如下:

  • Android中悬浮窗口的实现原理实例分析

    本文实例讲述了Android中悬浮窗口的实现原理.分享给大家供大家参考.具体如下: 用了我一个周末的时间,个中愤懑就不说了,就这个问题,我翻遍全球网络没有一篇像样的资料,现在将实现原理简单叙述如下: 调用WindowManager,并设置WindowManager.LayoutParams的相关属性,通过WindowManager的addView方法创建View,这样产生出来的View根据WindowManager.LayoutParams属性不同,效果也就不同了.比如创建系统顶级窗口,实现悬浮

  • 详解Android中实现热更新的原理

    这篇文章就来介绍一下Android中实现热更新的原理. 一.ClassLoader 我们知道Java在运行时加载对应的类是通过ClassLoader来实现的,ClassLoader本身是一个抽象来,Android中使用PathClassLoader类作为Android的默认的类加载器,PathClassLoader其实实现的就是简单的从文件系统中加载类文件.PathClassLoade本身继承自BaseDexClassLoader,BaseDexClassLoader重写了findClass方法

  • Python中使用gflags实例及原理解析

    这篇文章主要介绍了Python中使用gflags实例及原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 安装命令pip install python-gflags 使用示例: import gflags FLAGS = gflags.FLAGS gflags.DEFINE_string('name', 'ming', 'this is a value') gflags.DEFINE_integer('qps', 0, 'test qps'

  • Python中gevent模块协程使用

    目录 背景 什么是协程? 什么是 gevent? 协程的例子 Q&A Q:gevent 无法捕获的耗时 A:猴子补丁 实践 异步 requests 请求 gevent 的锁 Tip 背景 因为 Python 线程的性能问题,在 Python 中使用多线程运行代码经常不能达到预期的效果.而实际开发中我们经常有高并发的需求,这就要求我们的代码在跑的更快的同时需要单位时间内执行更多的有效逻辑.减少无用的等待. 什么是协程? 我们可以认为线程是轻量级的进程,所以你也可以理解协程是轻量级的线程.协程即在一

  • python中Task封装协程的知识点总结

    说明 1.Task是Future的子类,Task是对协程的封装,我们把多个Task放在循环调度列表中,等待调度执行. 2.Task对象可以跟踪任务和状态.Future(Task是Futrue的子类)为我们提供了异步编程中最终结果的处理(Task类还具有状态处理功能). 3.把协程封装成Task,加入一个队列等待调用.刚创建Task的时候不执行,遇到await就执行. 实例 import asyncio async def func(): print(1) await asyncio.sleep(

  • 在android中如何用Java加载解析so

    理论基础 so的加载是一种解析式装载,这与dex有一定区别,dex是先加载进行优化验证生成odex,再去解析odex文件,而so更像边解析边装载,在加载过程中主要解析是load段. 下面主要是以java层的so加载进行从源码上进行解析加载流程. java层的so加载流程分析 System.loadLibrary入口点 在java层我们知道加载so文件是通过System.loadLibrary函数其实现的,下面就以其作为入口点进行分析它的调用关系和实现. System.loadLibrary在的函

  • 详解Android中Handler的内部实现原理

    本文主要是对Handler和消息循环的实现原理进行源码分析,如果不熟悉Handler可以参见博文<详解Android中Handler的使用方法>,里面对Android为何以引入Handler机制以及如何使用Handler做了讲解. 概括来说,Handler是Android中引入的一种让开发者参与处理线程中消息循环的机制.我们在使用Handler的时候与Message打交道最多,Message是Hanlder机制向开发人员暴露出来的相关类,可以通过Message类完成大部分操作Handler的功

随机推荐