pytorch::Dataloader中的迭代器和生成器应用详解

在使用pytorch训练模型,经常需要加载大量图片数据,因此pytorch提供了好用的数据加载工具Dataloader。

为了实现小批量循环读取大型数据集,在Dataloader类具体实现中,使用了迭代器和生成器。

这一应用场景正是python中迭代器模式的意义所在,因此本文对Dataloader中代码进行解读,可以更好的理解python中迭代器和生成器的概念。

本文的内容主要有:

  • 解释python中的迭代器和生成器概念
  • 解读pytorch中Dataloader代码,如何使用迭代器和生成器实现数据加载

python迭代基础

python中围绕着迭代有以下概念:

  1. 可迭代对象 iterables
  2. 迭代器 iterator
  3. 生成器 generator

这三个概念互相关联,并不是孤立的。在可迭代对象的基础上发展了迭代器,在迭代器的基础上又发展了生成器。

学习这些概念的名词解释没有多大意义。编程中很多的抽象概念都是为了更好的实现某些功能,才去人为创造的协议和模式。

因此,要理解它们,需要探究概念背后的逻辑,为什么这样设计?要解决的真正问题是什么?在哪些场景下应用是最好的?

迭代模式首先要解决的基础问题是,需要按一定顺序获取集合内部数据,比如循环某个list。

当数据很小时,不会有问题。但当读取大量数据时,一次性读取会超出内存限制,因此想出以下方法:

  • 把大的数据分成几个小块,分批处理
  • 惰性的取值方式,按需取值

循环读数据可分为下面三种应用场景,对应着容器(可迭代对象),迭代器和生成器:

  • for x in container: 为了遍历python内部序列容器(如list), 这些类型内部实现了__getitem__() 方法,可以从0开始按顺序遍历序列容器中的元素。
  • for x in iterator: 为了循环用户自定义的迭代器,需要实现__iter__和__next__方法,__iter__是迭代协议,具体每次迭代的执行逻辑在 __next__或next方法里
  • for x in generator: 为了节省循环的内存和加速,使用生成器来实现惰性加载,在迭代器的基础上加入了yield语句,最简单的例子是 range(5)

代码示例:

# 普通循环 for x in list
numbers = [1, 2, 3,]
for n in numbers:
  print(n) # 1,2,3

# for循环实际干的事情
# iter输入一个可迭代对象list,返回迭代器
# next方法取数据
my_iterator = iter(numbers)
next(my_iterator) # 1
next(my_iterator) # 2
next(my_iterator) # 3
next(my_iterator) # StopIteration exception

# 迭代器循环 for x in iterator
for i,n in enumerate(numbers):
  print(i,n) # 0,1 / 1,3 / 2,3

# 生成器循环 for x in generator
for i in range(3):
  print(i) # 0,1,2

上面示例代码中python内置函数iter和next的用法:

  • iter函数,调用__iter__,返回一个迭代器
  • next函数,输入迭代器,调用__next__,取出数据

比较容易混淆的是__iter__和__next__两个方法。它们的区别是:

  • __iter__是为了可以迭代,真正执行取数据的逻辑是__next__方法实现的,实际调用是通过next(iterator)完成
  • __iter__可以返回自身(return self),实际读取数据的实现放在__next__方法
  • __iter__可以和yield搭配,返回生成器对象

__iter__返回自身的做法有点类似 python中的类型系统。为了保持一致性,python中一切皆对象。

每个对象创建后,都有类型指针,而类型对象的指针指向元对象,元对象的指针指向自身。

生成器,是在__iter__方法中加入yield语句,好处有:

  • 减少循环判断逻辑的复杂度
  • 惰性取值,节省内存和时间

yield作用:

  • 代替函数中的return语句
  • 记住上一次循环迭代器内部元素的位置

三种循环模式常用函数

for x in container 方法:

  • list, deque, …
  • set, frozensets, …
  • dict, defaultdict, OrderedDict, Counter, …
  • tuple, namedtuple, …
  • str

for x in iterator 方法:

  • enumerate() # 加上list的index
  • sorted() # 排序list
  • reversed() # 倒序list
  • zip() # 合并list

for x in generator 方法:

  • range()
  • map()
  • filter()
  • reduce()
  • [x for x in list(...)]

Dataloder源码分析

pytorch采用 for x in iterator 模式,从Dataloader类中读取数据。

  1. 为了实现该迭代模式,在Dataloader内部实现__iter__方法,实际返回的是_DataLoaderIter类。
  2. _DataLoaderIter类里面,实现了 __iter__方法,返回自身,具体执行读数据的逻辑,在__next__方法中。

以下代码只截取了单线程下的数据读取。

class DataLoader(object):
  r"""
  Data loader. Combines a dataset and a sampler, and provides
  single- or multi-process iterators over the dataset.
  """
  def __init__(self, dataset, batch_size=1, shuffle=False, ...):
    self.dataset = dataset
    self.batch_sampler = batch_sampler
    ...

  def __iter__(self):
    return _DataLoaderIter(self)

  def __len__(self):
    return len(self.batch_sampler)

class _DataLoaderIter(object):
  r"""Iterates once over the DataLoader's dataset, as specified by the sampler"""
  def __init__(self, loader):
    self.sample_iter = iter(self.batch_sampler)
    ...

  def __next__(self):
    if self.num_workers == 0: # same-process loading
      indices = next(self.sample_iter) # may raise StopIteration
      batch = self.collate_fn([self.dataset[i] for i in indices])
      if self.pin_memory:
        batch = pin_memory_batch(batch)
      return batch
    ...

  def __iter__(self):
    return self

Dataloader类中读取数据Index的方法,采用了 for x in generator 方式,但是调用采用iter和next函数

  1. 构建随机采样类RandomSampler,内部实现了 __iter__方法
  2. __iter__方法内部使用了 yield,循环遍历数据集,当数量达到batch_size大小时,就返回
  3. 实例化随机采样类,传入iter函数,返回一个迭代器
  4. next会调用随机采样类中生成器,返回相应的index数据
class RandomSampler(object):
  """random sampler to yield a mini-batch of indices."""
  def __init__(self, batch_size, dataset, drop_last=False):
    self.dataset = dataset
    self.batch_size = batch_size
    self.num_imgs = len(dataset)
    self.drop_last = drop_last

  def __iter__(self):
    indices = np.random.permutation(self.num_imgs)
    batch = []
    for i in indices:
      batch.append(i)
      if len(batch) == self.batch_size:
        yield batch
        batch = []
    ## if images not to yield a batch
    if len(batch)>0 and not self.drop_last:
      yield batch

  def __len__(self):
    if self.drop_last:
      return self.num_imgs // self.batch_size
    else:
      return (self.num_imgs + self.batch_size - 1) // self.batch_size

batch_sampler = RandomSampler(batch_size. dataset)
sample_iter = iter(batch_sampler)
indices = next(sample_iter)

总结

本文总结了python中循环的三种模式:

  • for x in container 可迭代对象
  • for x in iterator 迭代器
  • for x in generator 生成器

pytorch中的数据加载模块 Dataloader,使用生成器来返回数据的索引,使用迭代器来返回需要的张量数据,可以在大量数据情况下,实现小批量循环迭代式的读取,避免了内存不足问题。

参考文章

迭代器和生成器
流畅的Python-第14章:可迭代的对象、迭代器和生成器
pytorch-dataloader源码

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch中如何使用DataLoader对数据集进行批处理的方法

    最近搞了搞minist手写数据集的神经网络搭建,一个数据集里面很多个数据,不能一次喂入,所以需要分成一小块一小块喂入搭建好的网络. pytorch中有很方便的dataloader函数来方便我们进行批处理,做了简单的例子,过程很简单,就像把大象装进冰箱里一共需要几步? 第一步:打开冰箱门. 我们要创建torch能够识别的数据集类型(pytorch中也有很多现成的数据集类型,以后再说). 首先我们建立两个向量X和Y,一个作为输入的数据,一个作为正确的结果: 随后我们需要把X和Y组成一个完整的数据集,

  • pytorch::Dataloader中的迭代器和生成器应用详解

    在使用pytorch训练模型,经常需要加载大量图片数据,因此pytorch提供了好用的数据加载工具Dataloader. 为了实现小批量循环读取大型数据集,在Dataloader类具体实现中,使用了迭代器和生成器. 这一应用场景正是python中迭代器模式的意义所在,因此本文对Dataloader中代码进行解读,可以更好的理解python中迭代器和生成器的概念. 本文的内容主要有: 解释python中的迭代器和生成器概念 解读pytorch中Dataloader代码,如何使用迭代器和生成器实现数

  • Python 中迭代器与生成器实例详解

    Python 中迭代器与生成器实例详解 本文通过针对不同应用场景及其解决方案的方式,总结了Python中迭代器与生成器的一些相关知识,具体如下: 1.手动遍历迭代器 应用场景:想遍历一个可迭代对象中的所有元素,但是不想用for循环 解决方案:使用next()函数,并捕获StopIteration异常 def manual_iter(): with open('/etc/passwd') as f: try: while True: line=next(f) if line is None: br

  • Python 迭代器与生成器实例详解

    Python 迭代器与生成器实例详解 一.如何实现可迭代对象和迭代器对象 1.由可迭代对象得到迭代器对象 例如l就是可迭代对象,iter(l)是迭代器对象 In [1]: l = [1,2,3,4] In [2]: l.__iter__ Out[2]: <method-wrapper '__iter__' of list object at 0x000000000426C7C8> In [3]: t = iter(l) In [4]: t.next() Out[4]: 1 In [5]: t.

  • python的迭代器与生成器实例详解

    本文以实例详解了python的迭代器与生成器,具体如下所示: 1. 迭代器概述:   迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退.   1.1 使用迭代器的优点   对于原生支持随机访问的数据结构(如tuple.list),迭代器和经典for循环的索引访问相比并无优势,反而丢失了索引值(可以使用内建函数enumerate()找回这个索引值).但对于无法随机访问的数据结构(比

  • Python通过for循环理解迭代器和生成器实例详解

    本文实例讲述了Python通过for循环理解迭代器和生成器.分享给大家供大家参考,具体如下: 迭代器 可迭代对象 通过 for-in- 循环依次拿到数据进行使用的过程称为遍历,也叫迭代.我们把可以通过 for-in- 语句迭代读取数据的对象称之为可迭代对象. - 通过 isinstance()可以判断一个对象是否可以迭代 # 判断列表 print(isinstance([], Iterable) 打印结果为 True 即为可迭代对象. - 自定义一个能容纳数据的类,测试该类的可迭代性 impor

  • pytorch DataLoader的num_workers参数与设置大小详解

    Q:在给Dataloader设置worker数量(num_worker)时,到底设置多少合适?这个worker到底怎么工作的? train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4) 参数详解: 1.每次dataloader加载数据时:dataloader一次性创建num_worker个worker,(也可以说dataloader一次

  • JavaScript中的迭代器和生成器详解

    处理集合里的每一项是一个非常普通的操作,JavaScript提供了许多方法来迭代一个集合,从简单的for和for each循环到 map(),filter() 和 array comprehensions(数组推导式).在JavaScript 1.7中,迭代器和生成器在JavaScript核心语法中带来了新的迭代机制,而且还提供了定制 for-in 和 for each 循环行为的机制. 迭代器 迭代器是一个每次访问集合序列中一个元素的对象,并跟踪该序列中迭代的当前位置.在JavaScript中

  • 详解Python3中的迭代器和生成器及其区别

    介绍 本篇将介绍Python3中的迭代器与生成器,描述可迭代与迭代器关系,并实现自定义类的迭代器模式. 迭代的概念 上一次输出的结果为下一次输入的初始值,重复的过程称为迭代,每次重复即一次迭代,并且每次迭代的结果是下一次迭代的初始值 注:循环不是迭代 while True: #只满足重复,因而不是迭代 print('====>')  迭代器 1.为什么要有迭代器? 对于没有索引的数据类型,必须提供一种不依赖索引的迭代方式. 2.迭代器定义: 迭代器:可迭代对象执行__iter__方法,得到的结果

  • python 协程中的迭代器,生成器原理及应用实例详解

    本文实例讲述了python 协程中的迭代器,生成器原理及应用.分享给大家供大家参考,具体如下: 1.迭代器理解 迭代器: 迭代器是访问可迭代对象的工具 迭代器是指用iter(obj)函数返回的对象(实例) 迭代器是指用next(it)函数获取可迭代对象的数据 迭代器函数(iter和next) iter(iterable)从可迭代对象中返回一个迭代器,iterable必须是能提供一个迭代器的对象 next(iterator) 从迭代器iterator中获取下一了记录,如果无法获取下一条记录,则触发

  • 一文搞懂python 中的迭代器和生成器

    可迭代对象和迭代器 迭代(iterate)意味着重复,就像 for 循环迭代序列和字典那样,但实际上也可使用 for 循环迭代其他对象:实现了方法 __iter__ 的对象(迭代器协议的基础).__iter__方法返回一个迭代器,它是包含方法 __next__ 的对象,调用时可不提供任何参数:当你调用 __next__ 时,迭代器应返回其下一个值:如果没有可供返回的值,应引发 StopIteration 异常:也可使用内置函数 next(),此种情况下,next(it) 与 it.__next(

随机推荐