pytorch之inception_v3的实现案例

如下所示:

from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
import argparse
print("PyTorch Version: ",torch.__version__)
print("Torchvision Version: ",torchvision.__version__)

# Top level data directory. Here we assume the format of the directory conforms
#  to the ImageFolder structure

数据集路径,路径下的数据集分为训练集和测试集,也就是train 以及val,train下分为两类数据1,2,val集同理

data_dir = "/home/dell/Desktop/data/切割图像"
# Models to choose from [resnet, alexnet, vgg, squeezenet, densenet, inception]
model_name = "inception"
# Number of classes in the dataset
num_classes = 2#两类数据1,2

# Batch size for training (change depending on how much memory you have)
batch_size = 32#batchsize尽量选取合适,否则训练时会内存溢出

# Number of epochs to train for
num_epochs = 1000

# Flag for feature extracting. When False, we finetune the whole model,
#  when True we only update the reshaped layer params
feature_extract = True

# 参数设置,使得我们能够手动输入命令行参数,就是让风格变得和Linux命令行差不多
parser = argparse.ArgumentParser(description='PyTorch inception')
parser.add_argument('--outf', default='/home/dell/Desktop/dj/inception/', help='folder to output images and model checkpoints') #输出结果保存路径
parser.add_argument('--net', default='/home/dell/Desktop/dj/inception/inception.pth', help="path to net (to continue training)") #恢复训练时的模型路径
args = parser.parse_args()

训练函数

def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,is_inception=False):

  since = time.time()

  val_acc_history = []

  best_model_wts = copy.deepcopy(model.state_dict())
  best_acc = 0.0
  print("Start Training, InceptionV3!")
  with open("acc.txt", "w") as f1:
    with open("log.txt", "w")as f2:
      for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch+1, num_epochs))
        print('*' * 10)
        # Each epoch has a training and validation phase
        for phase in ['train', 'val']:
          if phase == 'train':
            model.train() # Set model to training mode
          else:
            model.eval()  # Set model to evaluate mode

          running_loss = 0.0
          running_corrects = 0

          # Iterate over data.
          for inputs, labels in dataloaders[phase]:
            inputs = inputs.to(device)
            labels = labels.to(device)

            # zero the parameter gradients
            optimizer.zero_grad()

            # forward
            # track history if only in train
            with torch.set_grad_enabled(phase == 'train'):

              if is_inception and phase == 'train':
                # From https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958
                outputs, aux_outputs = model(inputs)
                loss1 = criterion(outputs, labels)
                loss2 = criterion(aux_outputs, labels)
                loss = loss1 + 0.4*loss2
              else:
                outputs = model(inputs)
                loss = criterion(outputs, labels)

              _, preds = torch.max(outputs, 1)

              # backward + optimize only if in training phase
              if phase == 'train':
                loss.backward()
                optimizer.step()

            # statistics
            running_loss += loss.item() * inputs.size(0)
            running_corrects += torch.sum(preds == labels.data)
          epoch_loss = running_loss / len(dataloaders[phase].dataset)
          epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)

          print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
          f2.write('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
          f2.write('\n')
          f2.flush()
          # deep copy the model
          if phase == 'val':
            if (epoch+1)%50==0:
              #print('Saving model......')
              torch.save(model.state_dict(), '%s/inception_%03d.pth' % (args.outf, epoch + 1))
            f1.write("EPOCH=%03d,Accuracy= %.3f%%" % (epoch + 1, epoch_acc))
            f1.write('\n')
            f1.flush()
          if phase == 'val' and epoch_acc > best_acc:
            f3 = open("best_acc.txt", "w")
            f3.write("EPOCH=%d,best_acc= %.3f%%" % (epoch + 1,epoch_acc))
            f3.close()
            best_acc = epoch_acc
            best_model_wts = copy.deepcopy(model.state_dict())
          if phase == 'val':
            val_acc_history.append(epoch_acc)

  time_elapsed = time.time() - since
  print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
  print('Best val Acc: {:4f}'.format(best_acc))
  # load best model weights
  model.load_state_dict(best_model_wts)
  return model, val_acc_history

 #是否更新参数
def set_parameter_requires_grad(model, feature_extracting):
  if feature_extracting:
    for param in model.parameters():
      param.requires_grad = False

def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
  # Initialize these variables which will be set in this if statement. Each of these
  #  variables is model specific.
  model_ft = None
  input_size = 0

  if model_name == "resnet":
    """ Resnet18
    """
    model_ft = models.resnet18(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.fc.in_features
    model_ft.fc = nn.Linear(num_ftrs, num_classes)
    input_size = 224

  elif model_name == "alexnet":
    """ Alexnet
    """
    model_ft = models.alexnet(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.classifier[6].in_features
    model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
    input_size = 224

  elif model_name == "vgg":
    """ VGG11_bn
    """
    model_ft = models.vgg11_bn(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.classifier[6].in_features
    model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
    input_size = 224

  elif model_name == "squeezenet":
    """ Squeezenet
    """
    model_ft = models.squeezenet1_0(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))
    model_ft.num_classes = num_classes
    input_size = 224

  elif model_name == "densenet":
    """ Densenet
    """
    model_ft = models.densenet121(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.classifier.in_features
    model_ft.classifier = nn.Linear(num_ftrs, num_classes)
    input_size = 224

  elif model_name == "inception":
    """ Inception v3
    Be careful, expects (299,299) sized images and has auxiliary output
    """
    model_ft = models.inception_v3(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    # Handle the auxilary net
    num_ftrs = model_ft.AuxLogits.fc.in_features
    model_ft.AuxLogits.fc = nn.Linear(num_ftrs, num_classes)
    # Handle the primary net
    num_ftrs = model_ft.fc.in_features
    model_ft.fc = nn.Linear(num_ftrs,num_classes)
    input_size = 299

  else:
    print("Invalid model name, exiting...")
    exit()

  return model_ft, input_size

# Initialize the model for this run
model_ft, input_size = initialize_model(model_name, num_classes, feature_extract, use_pretrained=True)

# Print the model we just instantiated
#print(model_ft) 

#准备数据
data_transforms = {
  'train': transforms.Compose([
    transforms.RandomResizedCrop(input_size),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
  ]),
  'val': transforms.Compose([
    transforms.Resize(input_size),
    transforms.CenterCrop(input_size),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
  ]),
}

print("Initializing Datasets and Dataloaders...")

# Create training and validation datasets
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
# Create training and validation dataloaders
dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=0) for x in ['train', 'val']}

# Detect if we have a GPU available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
'''
是否加载之前训练过的模型
we='/home/dell/Desktop/dj/inception_050.pth'
model_ft.load_state_dict(torch.load(we))
'''
# Send the model to GPU
model_ft = model_ft.to(device)

params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:
  params_to_update = []
  for name,param in model_ft.named_parameters():
    if param.requires_grad == True:
      params_to_update.append(param)
      print("\t",name)
else:
  for name,param in model_ft.named_parameters():
    if param.requires_grad == True:
      print("\t",name)

# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(params_to_update, lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
#exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=30, gamma=0.95)

# Setup the loss fxn
criterion = nn.CrossEntropyLoss()

# Train and evaluate
model_ft, hist = train_model(model_ft, dataloaders_dict, criterion, optimizer_ft, num_epochs=num_epochs, is_inception=(model_name=="inception"))

'''
#随机初始化时的训练程序
# Initialize the non-pretrained version of the model used for this run
scratch_model,_ = initialize_model(model_name, num_classes, feature_extract=False, use_pretrained=False)
scratch_model = scratch_model.to(device)
scratch_optimizer = optim.SGD(scratch_model.parameters(), lr=0.001, momentum=0.9)
scratch_criterion = nn.CrossEntropyLoss()
_,scratch_hist = train_model(scratch_model, dataloaders_dict, scratch_criterion, scratch_optimizer, num_epochs=num_epochs, is_inception=(model_name=="inception"))

# Plot the training curves of validation accuracy vs. number
# of training epochs for the transfer learning method and
# the model trained from scratch
ohist = []
shist = []

ohist = [h.cpu().numpy() for h in hist]
shist = [h.cpu().numpy() for h in scratch_hist]

plt.title("Validation Accuracy vs. Number of Training Epochs")
plt.xlabel("Training Epochs")
plt.ylabel("Validation Accuracy")
plt.plot(range(1,num_epochs+1),ohist,label="Pretrained")
plt.plot(range(1,num_epochs+1),shist,label="Scratch")
plt.ylim((0,1.))
plt.xticks(np.arange(1, num_epochs+1, 1.0))
plt.legend()
plt.show()
'''

以上这篇pytorch之inception_v3的实现案例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 解决Pytorch训练过程中loss不下降的问题

    在使用Pytorch进行神经网络训练时,有时会遇到训练学习率不下降的问题.出现这种问题的可能原因有很多,包括学习率过小,数据没有进行Normalization等.不过除了这些常规的原因,还有一种难以发现的原因:在计算loss时数据维数不匹配. 下面是我的代码: loss_function = torch.nn.MSE_loss() optimizer.zero_grad() output = model(x_train) loss = loss_function(output, y_train)

  • pytorch构建网络模型的4种方法

    利用pytorch来构建网络模型有很多种方法,以下简单列出其中的四种. 假设构建一个网络模型如下: 卷积层-->Relu层-->池化层-->全连接层-->Relu层-->全连接层 首先导入几种方法用到的包: import torch import torch.nn.functional as F from collections import OrderedDict 第一种方法 # Method 1 --------------------------------------

  • Pytorch 数据加载与数据预处理方式

    数据加载分为加载torchvision.datasets中的数据集以及加载自己使用的数据集两种情况. torchvision.datasets中的数据集 torchvision.datasets中自带MNIST,Imagenet-12,CIFAR等数据集,所有的数据集都是torch.utils.data.Dataset的子类,都包含 _ _ len _ (获取数据集长度)和 _ getItem _ _ (获取数据集中每一项)两个子方法. Dataset源码如上,可以看到其中包含了两个没有实现的子

  • 关于PyTorch源码解读之torchvision.models

    PyTorch框架中有一个非常重要且好用的包:torchvision,该包主要由3个子包组成,分别是:torchvision.datasets.torchvision.models.torchvision.transforms. 这3个子包的具体介绍可以参考官网: http://pytorch.org/docs/master/torchvision/index.html. 具体代码可以参考github: https://github.com/pytorch/vision/tree/master/

  • pytorch载入预训练模型后,实现训练指定层

    1.有了已经训练好的模型参数,对这个模型的某些层做了改变,如何利用这些训练好的模型参数继续训练: pretrained_params = torch.load('Pretrained_Model') model = The_New_Model(xxx) model.load_state_dict(pretrained_params.state_dict(), strict=False) strict=False 使得预训练模型参数中和新模型对应上的参数会被载入,对应不上或没有的参数被抛弃. 2.

  • pytorch之inception_v3的实现案例

    如下所示: from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.optim as optim import numpy as np import torchvision from torchvision import datasets, models, transforms import matplotlib.py

  • pytorch中[..., 0]的用法说明

    在看程序的时候看到了x[-, 0]的语句不是很理解,后来自己做实验略微了解,以此记录方便自己查看. b=torch.Tensor([[[[10,2],[4,5],[7,8]],[[1,2],[4,5],[7,8]]]]) print(b.size()) (1, 2, 3, 2) print(b[-,0]) tensor([[[10., 4., 7.], [ 1., 4., 7.]]]) print(b[-,0].size()) (1, 2, 3) print(b[-,2]) Traceback

  • pytorch SENet实现案例

    我就废话不多说了,大家还是直接看代码吧~ from torch import nn class SELayer(nn.Module): def __init__(self, channel, reduction=16): super(SELayer, self).__init__() //返回1X1大小的特征图,通道数不变 self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, cha

  • pytorch单维筛选 相乘的案例

    m需要和筛选的结果维度相同 >0.5运行的结果与原来维度相同,结果是 0 1,0代不符合,1代表符合. import torch m=torch.Tensor([0.1,0.2,0.3]).cuda() iou=torch.Tensor([0.5,0.6,0.7]) x= m * ((iou > 0.5).type(torch.cuda.FloatTensor)) print(x) 下面是把第一条与第二条变成了2: import torch m=torch.Tensor([0.1,0.2,0.

  • PyTorch中的squeeze()和unsqueeze()解析与应用案例

    目录 1.torch.squeeze 2.torch.unsqueeze 3.例子 附上官网地址: https://pytorch.org/docs/stable/index.html 1.torch.squeeze squeeze的用法主要就是对数据的维度进行压缩或者解压. 先看torch.squeeze() 这个函数主要对数据的维度进行压缩,去掉维数为1的的维度,比如是一行或者一列这种,一个一行三列(1,3)的数去掉第一个维数为一的维度之后就变成(3)行.squeeze(a)就是将a中所有为

  • Pytorch实现LSTM案例总结学习

    目录 前言 模型构建部分主要工作 1.构建网络层.前向传播forward() 2.实例化网络,定义损失函数和优化器 3.训练模型.反向传播backward() 4.测试模型 前言 关键步骤主要分为数据准备和模型构建两大部分,其中, 数据准备主要工作: 1.训练集和测试集的划分 2.训练数据的归一化 3.规范输入数据的格式 模型构建部分主要工作 1.构建网络层.前向传播forward() class LSTM(nn.Module):#注意Module首字母需要大写 def __init__(sel

  • pytorch Dataset,DataLoader产生自定义的训练数据案例

    1. torch.utils.data.Dataset datasets这是一个pytorch定义的dataset的源码集合.下面是一个自定义Datasets的基本框架,初始化放在__init__()中,其中__getitem__()和__len__()两个方法是必须重写的. __getitem__()返回训练数据,如图片和label,而__len__()返回数据长度. class CustomDataset(data.Dataset):#需要继承data.Dataset def __init_

  • pytorch dataset实战案例之读取数据集的代码

    目录 概述 项目结构与代码 总结 参考资料 概述 最近在跑一篇图像修复论文的代码,配置好环境之后开始运行,发现数据一直加载不进去.害,还是得看人家代码咋写的,一句一句看逻辑,准能找出问题.通读dataset后,发现了问题所在,终于成功加载了数据集. 项目结构与代码 项目结构 主要的目的就是从数据集中读取到彩色图像和掩码图像.代码代码中涉及到torch.transforms.合并路径等知识点,我在代码中都进行了详细的注释,路径要对照着项目结构,如果自己用的话要根据项目结构去将相对路径改过来.dat

  • 运用PyTorch动手搭建一个共享单车预测器

    本文摘自 <深度学习原理与PyTorch实战> 我们将从预测某地的共享单车数量这个实际问题出发,带领读者走进神经网络的殿堂,运用PyTorch动手搭建一个共享单车预测器,在实战过程中掌握神经元.神经网络.激活函数.机器学习等基本概念,以及数据预处理的方法.此外,还会揭秘神经网络这个"黑箱",看看它如何工作,哪个神经元起到了关键作用,从而让读者对神经网络的运作原理有更深入的了解. 3.1 共享单车的烦恼 大约从2016年起,我们的身边出现了很多共享单车.五颜六色.各式各样的共

  • 详解PyTorch手写数字识别(MNIST数据集)

    MNIST 手写数字识别是一个比较简单的入门项目,相当于深度学习中的 Hello World,可以让我们快速了解构建神经网络的大致过程.虽然网上的案例比较多,但还是要自己实现一遍.代码采用 PyTorch 1.0 编写并运行. 导入相关库 import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, t

随机推荐