Python运用于数据分析的简单教程

最近,Analysis with Programming加入了Planet Python。作为该网站的首批特约博客,我这里来分享一下如何通过Python来开始数据分析。具体内容如下:

数据导入
        导入本地的或者web端的CSV文件;
    数据变换;
    数据统计描述;
    假设检验
        单样本t检验;
    可视化;
    创建自定义函数。

数据导入

这是很关键的一步,为了后续的分析我们首先需要导入数据。通常来说,数据是CSV格式,就算不是,至少也可以转换成CSV格式。在Python中,我们的操作如下:

import pandas as pd

# Reading data locally
df = pd.read_csv('/Users/al-ahmadgaidasaad/Documents/d.csv')

# Reading data from web
data_url = "https://raw.githubusercontent.com/alstat/Analysis-with-Programming/master/2014/Python/Numerical-Descriptions-of-the-Data/data.csv"
df = pd.read_csv(data_url)

为了读取本地CSV文件,我们需要pandas这个数据分析库中的相应模块。其中的read_csv函数能够读取本地和web数据。

数据变换

既然在工作空间有了数据,接下来就是数据变换。统计学家和科学家们通常会在这一步移除分析中的非必要数据。我们先看看数据:

# Head of the data
print df.head()

# OUTPUT
 Abra Apayao Benguet Ifugao Kalinga
0 1243 2934  148 3300 10553
1 4158 9235  4287 8063 35257
2 1787 1922  1955 1074  4544
3 17152 14501  3536 19607 31687
4 1266 2385  2530 3315  8520

# Tail of the data
print df.tail()

# OUTPUT
  Abra Apayao Benguet Ifugao Kalinga
74 2505 20878  3519 19737 16513
75 60303 40065  7062 19422 61808
76 6311 6756  3561 15910 23349
77 13345 38902  2583 11096 68663
78 2623 18264  3745 16787 16900

对R语言程序员来说,上述操作等价于通过print(head(df))来打印数据的前6行,以及通过print(tail(df))来打印数据的后6行。当然Python中,默认打印是5行,而R则是6行。因此R的代码head(df, n = 10),在Python中就是df.head(n = 10),打印数据尾部也是同样道理。

在R语言中,数据列和行的名字通过colnames和rownames来分别进行提取。在Python中,我们则使用columns和index属性来提取,如下:

# Extracting column names
print df.columns

# OUTPUT
Index([u'Abra', u'Apayao', u'Benguet', u'Ifugao', u'Kalinga'], dtype='object')

# Extracting row names or the index
print df.index

# OUTPUT
Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], dtype='int64')

数据转置使用T方法,

# Transpose data
print df.T

# OUTPUT
   0  1  2  3  4  5  6  7  8  9
Abra  1243 4158 1787 17152 1266 5576 927 21540 1039 5424
Apayao 2934 9235 1922 14501 2385 7452 1099 17038 1382 10588
Benguet 148 4287 1955 3536 2530 771 2796 2463 2592 1064
Ifugao 3300 8063 1074 19607 3315 13134 5134 14226 6842 13828
Kalinga 10553 35257 4544 31687 8520 28252 3106 36238 4973 40140 

   ...  69  70  71  72  73  74  75  76  77
Abra  ... 12763 2470 59094 6209 13316 2505 60303 6311 13345
Apayao ... 37625 19532 35126 6335 38613 20878 40065 6756 38902
Benguet ...  2354 4045 5987 3530 2585 3519 7062 3561 2583
Ifugao ...  9838 17125 18940 15560 7746 19737 19422 15910 11096
Kalinga ... 65782 15279 52437 24385 66148 16513 61808 23349 68663 

   78
Abra  2623
Apayao 18264
Benguet 3745
Ifugao 16787
Kalinga 16900

其他变换,例如排序就是用sort属性。现在我们提取特定的某列数据。Python中,可以使用iloc或者ix属性。但是我更喜欢用ix,因为它更稳定一些。假设我们需数据第一列的前5行,我们有:

print df.ix[:, 0].head()

# OUTPUT
0  1243
1  4158
2  1787
3 17152
4  1266
Name: Abra, dtype: int64

顺便提一下,Python的索引是从0开始而非1。为了取出从11到20行的前3列数据,我们有:

print df.ix[10:20, 0:3]

# OUTPUT
 Abra Apayao Benguet
10 981 1311  2560
11 27366 15093  3039
12 1100 1701  2382
13 7212 11001  1088
14 1048 1427  2847
15 25679 15661  2942
16 1055 2191  2119
17 5437 6461  734
18 1029 1183  2302
19 23710 12222  2598
20 1091 2343  2654

上述命令相当于df.ix[10:20, ['Abra', 'Apayao', 'Benguet']]。

为了舍弃数据中的列,这里是列1(Apayao)和列2(Benguet),我们使用drop属性,如下:

print df.drop(df.columns[[1, 2]], axis = 1).head()

# OUTPUT
 Abra Ifugao Kalinga
0 1243 3300 10553
1 4158 8063 35257
2 1787 1074  4544
3 17152 19607 31687
4 1266 3315  8520

axis 参数告诉函数到底舍弃列还是行。如果axis等于0,那么就舍弃行。

统计描述

下一步就是通过describe属性,对数据的统计特性进行描述:

print df.describe()

# OUTPUT
    Abra  Apayao  Benguet  Ifugao  Kalinga
count  79.000000  79.000000 79.000000  79.000000  79.000000
mean 12874.379747 16860.645570 3237.392405 12414.620253 30446.417722
std 16746.466945 15448.153794 1588.536429 5034.282019 22245.707692
min  927.000000 401.000000 148.000000 1074.000000 2346.000000
25%  1524.000000 3435.500000 2328.000000 8205.000000 8601.500000
50%  5790.000000 10588.000000 3202.000000 13044.000000 24494.000000
75% 13330.500000 33289.000000 3918.500000 16099.500000 52510.500000
max 60303.000000 54625.000000 8813.000000 21031.000000 68663.000000

假设检验

Python有一个很好的统计推断包。那就是scipy里面的stats。ttest_1samp实现了单样本t检验。因此,如果我们想检验数据Abra列的稻谷产量均值,通过零假设,这里我们假定总体稻谷产量均值为15000,我们有:

from scipy import stats as ss

# Perform one sample t-test using 1500 as the true mean
print ss.ttest_1samp(a = df.ix[:, 'Abra'], popmean = 15000)

# OUTPUT
(-1.1281738488299586, 0.26270472069109496)

返回下述值组成的元祖:

t : 浮点或数组类型
    t统计量
    prob : 浮点或数组类型
    two-tailed p-value 双侧概率值

通过上面的输出,看到p值是0.267远大于α等于0.05,因此没有充分的证据说平均稻谷产量不是150000。将这个检验应用到所有的变量,同样假设均值为15000,我们有:

print ss.ttest_1samp(a = df, popmean = 15000)

# OUTPUT
(array([ -1.12817385, 1.07053437, -65.81425599, -4.564575 , 6.17156198]),
 array([ 2.62704721e-01, 2.87680340e-01, 4.15643528e-70,
   1.83764399e-05, 2.82461897e-08]))

第一个数组是t统计量,第二个数组则是相应的p值。

可视化

Python中有许多可视化模块,最流行的当属matpalotlib库。稍加提及,我们也可选择bokeh和seaborn模块。之前的博文中,我已经说明了matplotlib库中的盒须图模块功能。

# Import the module for plotting
import matplotlib.pyplot as plt
 plt.show(df.plot(kind = 'box'))

现在,我们可以用pandas模块中集成R的ggplot主题来美化图表。要使用ggplot,我们只需要在上述代码中多加一行,

import matplotlib.pyplot as plt
pd.options.display.mpl_style = 'default' # Sets the plotting display theme to ggplot2
df.plot(kind = 'box')

这样我们就得到如下图表:

比matplotlib.pyplot主题简洁太多。但是在本博文中,我更愿意引入seaborn模块,该模块是一个统计数据可视化库。因此我们有:

# Import the seaborn library
import seaborn as sns
 # Do the boxplot
plt.show(sns.boxplot(df, widths = 0.5, color = "pastel"))

多性感的盒式图,继续往下看。

plt.show(sns.violinplot(df, widths = 0.5, color = "pastel"))

plt.show(sns.distplot(df.ix[:,2], rug = True, bins = 15))

with sns.axes_style("white"):
 plt.show(sns.jointplot(df.ix[:,1], df.ix[:,2], kind = "kde"))

plt.show(sns.lmplot("Benguet", "Ifugao", df))

创建自定义函数

在Python中,我们使用def函数来实现一个自定义函数。例如,如果我们要定义一个两数相加的函数,如下即可:

def add_2int(x, y):
 return x + y

print add_2int(2, 2)

# OUTPUT
4

顺便说一下,Python中的缩进是很重要的。通过缩进来定义函数作用域,就像在R语言中使用大括号{…}一样。这有一个我们之前博文的例子:

产生10个正态分布样本,其中u=3和o.
    基于95%的置信度,计算 x_bar 和 x_bar2 ;
    重复100次; 然后
    计算出置信区间包含真实均值的百分比

Python中,程序如下:

import numpy as np
import scipy.stats as ss

def case(n = 10, mu = 3, sigma = np.sqrt(5), p = 0.025, rep = 100):
 m = np.zeros((rep, 4))

 for i in range(rep):
  norm = np.random.normal(loc = mu, scale = sigma, size = n)
  xbar = np.mean(norm)
  low = xbar - ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))
  up = xbar + ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))

  if (mu > low) & (mu < up):
   rem = 1
  else:
   rem = 0

  m[i, :] = [xbar, low, up, rem]

 inside = np.sum(m[:, 3])
 per = inside / rep
 desc = "There are " + str(inside) + " confidence intervals that contain "
   "the true mean (" + str(mu) + "), that is " + str(per) + " percent of the total CIs"

 return {"Matrix": m, "Decision": desc}

上述代码读起来很简单,但是循环的时候就很慢了。下面针对上述代码进行了改进,这多亏了 Python专家。

import numpy as np
import scipy.stats as ss

def case2(n = 10, mu = 3, sigma = np.sqrt(5), p = 0.025, rep = 100):
 scaled_crit = ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))
 norm = np.random.normal(loc = mu, scale = sigma, size = (rep, n))

 xbar = norm.mean(1)
 low = xbar - scaled_crit
 up = xbar + scaled_crit

 rem = (mu > low) & (mu < up)
 m = np.c_[xbar, low, up, rem]

 inside = np.sum(m[:, 3])
 per = inside / rep
 desc = "There are " + str(inside) + " confidence intervals that contain "
   "the true mean (" + str(mu) + "), that is " + str(per) + " percent of the total CIs"
 return {"Matrix": m, "Decision": desc}
(0)

相关推荐

  • 对Python进行数据分析_关于Package的安装问题

    一.为什么要使用Python进行数据分析? python拥有一个巨大的活跃的科学计算社区,拥有不断改良的库,能够轻松的集成C,C++,Fortran代码(Cython项目),可以同时用于研究和原型的构建以及生产系统的构建. 二.Python的优势与劣势: 1.Python是一种解释型语言,运行速度比编译型数据慢. 2.由于python有一个全局解释器锁(GIL),防止解释器同时执行多条python字节码,所以python不适用于高并发.多线程的应用程序. 三.使用Python进行数据分析常用的扩

  • R vs. Python 数据分析中谁与争锋?

    当我们想要选择一种编程语言进行数据分析时,相信大多数人都会想到R和Python--但是从这两个非常强大.灵活的数据分析语言中二选一是非常困难的. 我承认我还没能从这两个数据科学家喜爱的语言中选出更好的那一个.因此,为了使事情变得有趣,本文将介绍一些关于这两种语言的详细信息,并将决策权留给读者.值得一提的是,有多种途径可以了解这两种语言各自的优缺点.然而在我看来,这两种语言之间其实有很强的关联. Stack Overflow趋势对比 上图显示了自从2008年(Stack Overflow 成立)以

  • Python数据分析之如何利用pandas查询数据示例代码

    前言 在数据分析领域,最热门的莫过于Python和R语言,本文将详细给大家介绍关于Python利用pandas查询数据的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧. 示例代码 这里的查询数据相当于R语言里的subset功能,可以通过布尔索引有针对的选取原数据的子集.指定行.指定列等.我们先导入一个student数据集: student = pd.io.parsers.read_csv('C:\\Users\\admin\\Desktop\\student.csv')

  • 在MAC上搭建python数据分析开发环境

    最近工作转型到数据开发领域,想在本地搭建一个数据开发环境.自己有三年python开发经验,马上想到使用numpy.scipy.sklearn.pandas搭建一套数据开发环境. ubuntu的环境,百度中文章比较多,搭建起来非常顺利.MAC环境的资料比较少,百度出来的,已经不对了,那我就来补充一篇吧. MAC自带python,python的安装我就不多说了. 安装pip 我喜欢用pip安装python库,非常方便,pip的安装只能用源码了. #下载源代码 https://pypi.python.

  • 利用python实现数据分析

    1:文件内容格式为json的数据如何解析 import json,os,sys current_dir=os.path.abspath(".") filename=[file for file in os.listdir(current_dir) if ".txt" in file]#得到当前目录中,后缀为.txt的数据文件 fn=filename[0] if len(filename)==1 else "" #从list中取出第一个文件名 if

  • Python数据分析之真实IP请求Pandas详解

    前言 pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的 .Series 和 DataFrame 分别对应于一维的序列和二维的表结构.pandas 约定俗成的导入方法如下: from pandas import Series,DataFrame import pandas as pd 1.1. Pandas分析步骤 1.载入日志数据 2.载

  • Python运用于数据分析的简单教程

    最近,Analysis with Programming加入了Planet Python.作为该网站的首批特约博客,我这里来分享一下如何通过Python来开始数据分析.具体内容如下: 数据导入         导入本地的或者web端的CSV文件:     数据变换:     数据统计描述:     假设检验         单样本t检验:     可视化:     创建自定义函数. 数据导入 这是很关键的一步,为了后续的分析我们首先需要导入数据.通常来说,数据是CSV格式,就算不是,至少也可以转

  • Python 发送SMTP邮件的简单教程

    一.两个模块 Python使用SMTP发送邮件的两个模块:smtplib模块.email模块. smtplib:负责发送邮件 email:负责构建邮件 二.SMTP端口 1)未加密端口,smtplib.SMTP接口,端口:25 2)使用SSL加密,smtplib.SMTP_SSL接口,端口:465 3)使用TLS加密,端口:587 三.四大步骤 1.构造邮件内容 # 纯文本 msg = MIMEText(content) # 附件 msg = MIMEMultipart() 2.连接邮件服务器

  • 在Python中使用SQLite的简单教程

    SQLite是一种嵌入式数据库,它的数据库就是一个文件.由于SQLite本身是C写的,而且体积很小,所以,经常被集成到各种应用程序中,甚至在iOS和Android的App中都可以集成. Python就内置了SQLite3,所以,在Python中使用SQLite,不需要安装任何东西,直接使用. 在使用SQLite前,我们先要搞清楚几个概念: 表是数据库中存放关系数据的集合,一个数据库里面通常都包含多个表,比如学生的表,班级的表,学校的表,等等.表和表之间通过外键关联. 要操作关系数据库,首先需要连

  • python中format()函数的简单使用教程

    先给大家介绍下python中format函数,在文章下面给大家介绍python.format()函数的简单使用 ---恢复内容开始--- python中format函数用于字符串的格式化 通过关键字 print('{名字}今天{动作}'.format(名字='陈某某',动作='拍视频'))#通过关键字 grade = {'name' : '陈某某', 'fenshu': '59'} print('{name}电工考了{fenshu}'.format(**grade))#通过关键字,可用字典当关键

  • python中的turtle库函数简单使用教程

    具体内容如下所示: 参考案例: import turtle d=0 for i in range(4): turtle.fd(200) #或者写成turtle.forward(200) d =d+90 turtle.seth(d) #改变角度,可以写成turtle.setheading(to_angle) 总结 以上所述是小编给大家介绍的python中的turtle库函数简单使用教程,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的.在此也非常感谢大家对我们网站的支持! 如

  • 基于python实现微信好友数据分析(简单)

    一.功能介绍 本文主要介绍利用网页端微信获取数据,实现个人微信好友数据的获取,并进行一些简单的数据分析,功能包括: 1.爬取好友列表,显示好友昵称.性别和地域和签名, 文件保存为 xlsx 格式 2.统计好友的地域分布,并且做成词云和可视化展示在地图上 二.依赖库 1.Pyecharts:一个用于生成echarts图表的类库,echarts是百度开源的一个数据可视化库,用echarts生成的图可视化效果非常棒,使用pyechart库可以在python中生成echarts数据图. 2.Itchat

  • python中turtle库的简单使用教程

    python的turtle库的简单使用 Python的turtle库是一个直观有趣的图形绘制函数库,是python的标准库之一. 一.绘图坐标体系 turtle库绘制图形的基本框架:通过一个小海龟在坐标系中的爬行轨迹绘制图形,小海龟的初始位置在画布中央. turtle.setup(width,height,startx,starty) 1.width,height:为主窗体的宽和高 2.startx,starty:为窗口距离左侧与屏幕左侧像素距离和窗口顶部与屏幕顶部的像素距离. import t

  • python 制作python包,封装成可用模块教程

    首先编写py程序: printtest.py def test(): print('print test') 将以上.py文件做成python模块,需要在相同目录下创建setup.py文件,setup.py中输入配置信息: from setuptools import setup setup(name='printtest', version='1.0', py_modules=['printtest'], ) 打开终端,定位到该文件夹下,输入: python setup.py sdist 此时

  • Python基于Socket实现的简单聊天程序示例

    本文实例讲述了Python基于Socket实现的简单聊天程序.分享给大家供大家参考,具体如下: 需求:SCIENCE 和MOOD两个人软件专业出身,厌倦了大众化的聊天软件,想着自己开发一款简易的聊天软件,满足他们的个性化需求,又不失"专业水准",Talk is easy, try to code it. 技术:socket,详细可参考前文:Python Socket实现简单TCP Server/client功能 语言:python 尽管socket区分服务器和客户端,但是在聊天程序中两

  • Python栈算法的实现与简单应用示例

    本文实例讲述了Python栈算法的实现与简单应用.分享给大家供大家参考,具体如下: 原理: 栈作为一种数据结构,是一种只能在一端进行插入和删除操作.它按照先进后出的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶,需要读数据的时候从栈顶开始弹出数据(最后一个数据被第一个读出来) 桟的应用场景非常多:1.内存管理中使用的堆栈:2.基于桟实现的二叉树的遍历:3.在语言处理中,符号的平衡问题,在语言中,往往很多符号是成对出现的,比如<>,{},[],()等,如何判断符号是否漏了,一种实现方式就

随机推荐