python基于plotly实现画饼状图代码实例

这篇文章主要介绍了python基于plotly实现画饼状图代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

代码

import pandas as pd
import numpy as np
import plotly.plotly as py
import plotly.graph_objs as go

path = '/home/v-gazh/PycharmProjects/us_data/limit_code.csv'

df = pd.read_csv(path)
df.set_index(['code'], inplace=True)

# ST 占比
total_count = len(df)
st_count = len(df[df['isST']==1])
print(f'禁投池总数:{total_count}')
print(f'禁投池中ST个数:{st_count}') # f'禁投池中ST个数:{}'

# 成分股占比
sz50_count = len(df[df['isSz50']==1])
print(f'禁投池中上证50个数:{sz50_count}')
hs300_count = len(df[df['isHs300']==1])
print(f'禁投池中沪深300个数:{hs300_count}')
zz500_count = len(df[df['isZz500']==1])
print(f'禁投池中中证500个数:{zz500_count}')

# 退市占比
outdate_count = len(df['outDate'].dropna())
print(f'禁投池中退市股票个数:{outdate_count}')

# 非股票
not_stock = len(df[df['type']!=1])
print(f'禁投池中非股票个数:{not_stock} 【SZ006415 为基金:F006415 | SZ000000 代码错误】')

# 次新股
delta_df = pd.DataFrame((pd.to_datetime(df['date']) - pd.to_datetime(df['ipoDate'])))
new_stock = len(delta_df[delta_df[0] < pd.Timedelta('365 days')]) # 上市不满一年为次新股
print(f'禁投池中次新股个数:{new_stock}')

# 市值小于30亿的股票
maketValue = len(df[df['maketValue'] < 3000000000])
print(f'市值小于30亿股票个数:{maketValue}')

# 画图
labels = ['股票总数', 'ST股票', '深证50', '沪深300', '中证500', '退市股票', '非股票', '次新股', '小市值']
values = [total_count, st_count, sz50_count, hs300_count, zz500_count, outdate_count, not_stock, new_stock, maketValue]

trace = go.Pie(labels=labels, values=values,textfont=dict(size=15),)
py.iplot([trace], filename='basic_pie_chart')

注:上面代码中,起主要作用的主要是

# 画图
labels = ['股票总数', 'ST股票', '深证50', '沪深300', '中证500', '退市股票', '非股票', '次新股', '小市值']
values = [total_count, st_count, sz50_count, hs300_count, zz500_count, outdate_count, not_stock, new_stock, maketValue]

trace = go.Pie(labels=labels, values=values,textfont=dict(size=15),)
py.iplot([trace], filename='basic_pie_chart')
values = [total_count, st_count, sz50_count, hs300_count, zz500_count, outdate_count, not_stock, new_stock, maketValue]

values 列表里的内容为int数值,对应上面的labels

图示

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python使用Plotly绘图工具绘制散点图、线形图

    今天在研究Plotly绘制散点图的方法,供大家参考,具体内容如下 使用Python3.6 + Plotly Plotly版本2.0.0 在开始之前先说说,还需要安装库Numpy,安装方法在我的另一篇博客中有写到:python3.6下Numpy库下载与安装图文教程 因为Plotly没有自己独立的线性图形函数,所以把线性图形与散点图形全部用一个函数实现 这个函数是Scatter函数 下面举几个简单的例子 先画一个纯散点图,代码如下: import plotly import plotly.graph

  • 详解Python使用Plotly绘图工具,绘制甘特图

    今天来讲一下如何使用Python 的绘图工具Plotly来绘制甘特图的方法 甘特图大家应该了解熟悉,就是通过条形来显示项目的进度.时间安排等相关情况的. 我们今天来学习一下,如何使用ployly来绘制甘特图 绘制甘特图的函数为Plotly.figure_factoryz中create_gantt方法 通过参数事件Task,开始Start,结束Finish的时间的数据来绘制甘特图 import plotly as py import plotly.figure_factory as ff pypl

  • Python数据可视化:顶级绘图库plotly详解

    有史以来最牛逼的绘图工具,没有之一 plotly是现代平台的敏捷商业智能和数据科学库,它作为一款开源的绘图库,可以应用于Python.R.MATLAB.Excel.JavaScript和jupyter等多种语言,主要使用的js进行图形绘制,实现过程中主要就是调用plotly的函数接口,底层实现完全被隐藏,便于初学者的掌握. 下面主要从Python的角度来分析plotly的绘图原理及方法: ###安装plotly: 使用pip来安装plotly库,如果机器上没有pip,需要先进行pip的安装,这里

  • python plotly画柱状图代码实例

    这篇文章主要介绍了python plotly画柱状图代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 代码 import pandas as pd import numpy as np import plotly.plotly as py import plotly.graph_objs as go path = '/home/v-gazh/PycharmProjects/us_data/counts.csv' df = pd.read_

  • 基于python plotly交互式图表大全

    plotly可以制作交互式图表,直接上代码: import plotly.offline as py from plotly.graph_objs import Scatter, Layout import plotly.graph_objs as go py.init_notebook_mode(connected=True) import pandas as pd import numpy as np In [412]: #读取数据 df=pd.read_csv('seaborn.csv',

  • Python实现平行坐标图的绘制(plotly)方式

    平行坐标图简介 当数据的维度超过三维时,此时数据的可视化就变得不再那么简单.为解决高维数据的可视化问题,我们可以使用平行坐标图.以下关于平行坐标图的解释引自百度百科:为了克服传统的笛卡尔直角坐标系容易耗尽空间. 难以表达三维以上数据的问题, 平行坐标图将高维数据的各个变量用一系列相互平行的坐标轴表示, 变量值对应轴上位置.为了反映变化趋势和各个变量间相互关系,往往将描述不同变量的各点连接成折线.所以平行坐标图的实质是将m维欧式空间的一个点Xi(xi1,xi2,...,xim) 映射到二维平面上的

  • Python使用plotly绘制数据图表的方法

    导语:使用 python-plotly 模块来进行压测数据的绘制,并且生成静态 html 页面结果展示. 不少小伙伴在开发过程中都有对模块进行压测的经历,压测结束后大家往往喜欢使用Excel处理压测数据并绘制数据可视化视图,但这样不能很方便的使用web页面进行数据展示.本文将介绍使用python-plotly模块来进行压测数据的绘制,并且生成静态html页面方便结果展示. Plotly简介 Plotly是一款使用JavaScript开发的制图工具,提供了与主流数据分析语言交互的API(如:Pyt

  • python2.7使用plotly绘制本地散点图和折线图

    本人在学习使用Python和plotly处理数据时,经过两个小时艰难试错,终于完成了散点图和折线图的实例.在使用过程中遇到一个大坑,因为官方给出的案例是用在线存储的,所以需要安装jupyter(也就是ipython)才能使用notebook来处理生成的文件,一开始我没太懂iplot和plot之间的差异,导致浪费了很多时间. 重要提示:最新的jupyter不支持Python3.2及以下版本. 最后我只能继续采用本地文件的形式来解决这个问题了.下面放出我的测试代码,被注释掉的是官方给出的代码以及离线

  • python基于plotly实现画饼状图代码实例

    这篇文章主要介绍了python基于plotly实现画饼状图代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 代码 import pandas as pd import numpy as np import plotly.plotly as py import plotly.graph_objs as go path = '/home/v-gazh/PycharmProjects/us_data/limit_code.csv' df = p

  • 利用Tkinter和matplotlib两种方式画饼状图的实例

    当我们学习python的时候,总会用到一些常用的模块,接下来我就详细讲解下利用两种不同的方式画饼状图. 首先利用[Tkinter]中的canvas画布来画饼状图: from tkinter import Tk, Canvas def DrawPie(): #创建窗口 windows=Tk() #添加标题 windows.title("画饼图") # 设置画布样式 canvas=Canvas(windows,height=500,width=500) # 将画布打包到窗口 canvas.

  • python使用matplotlib画饼状图

    本文实例为大家分享了python使用matplotlib画饼状图的具体代码,供大家参考,具体内容如下 代码与详细注释 from matplotlib import pyplot as plt #调节图形大小,宽,高 plt.figure(figsize=(6,9)) #定义饼状图的标签,标签是列表 labels = [u'第一部分',u'第二部分',u'第三部分'] #每个标签占多大,会自动去算百分比 sizes = [60,30,10] colors = ['red','yellowgreen

  • Python数据可视化:饼状图的实例讲解

    使用python实现论文里面的饼状图: 原图: python代码实现: # # 饼状图 # plot.figure(figsize=(8,8)) labels = [u'Canteen', u'Supermarket', u'Dorm', u'Others'] sizes = [73, 21, 4, 2] colors = ['red', 'yellow', 'blue', 'green'] explode = (0.05, 0, 0, 0) patches, l_text, p_text =

  • Android使用自定义View实现饼状图的实例代码

    本文讲述了Android使用自定义View实现饼状图的实例代码.分享给大家供大家参考,具体如下: 1.效果图 2.代码实现 public class PieChartView extends View { private Paint mPaint; private List<PieData>pieDataList; // 饼状图初始绘制角度 private float mStartAngle = 0; public PieChartView(Context context) { this(co

  • R语言绘制饼状图代码实例

    R编程语言有许多库来创建图表和图表. 饼图是将值表示为具有不同颜色的圆的切片. 切片被标记,并且对应于每个片的数字也在图表中表示. 在R语言中,饼图是使用pie()函数创建的,它使用正数作为向量输入. 附加参数用于控制标签,颜色,标题等. 语法 使用R语言创建饼图的基本语法是 pie(x, labels, radius, main, col, clockwise) 以下是所使用的参数的描述 x是包含饼图中使用的数值的向量. labels用于给出切片的描述. radius表示饼图圆的半径(值-1和

  • python基于FTP实现文件传输相关功能代码实例

    这篇文章主要介绍了python基于FTP实现文件传输相关功能代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 本实例有文件传输相关功能,包括:文件校验.进度条打印.断点续传 客户端示例: import socket import json import os import hashlib CODE = { '1001':'重新上传文件' } def file_md5(file_path): obj = open(file_path,'rb

  • jQuery插件FusionCharts绘制的3D饼状图效果实例【附demo源码下载】

    本文实例讲述了jQuery插件FusionCharts绘制的3D饼状图效果.分享给大家供大家参考,具体如下: 1.实现源码 <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title>最新版FusionCharts3D饼图</title> <script src="js/jquery-1.4.2.min.js"></s

  • 如何利用pyecharts画好看的饼状图

    前言 使用的pyecharts是v1.0 这里需要注意,pyecharts0.5的版本和v1.0以上的版本完全不一样,可以说是两个包 该包能够方便快捷的绘制图形 饼状图 圆环 代码: from pyecharts.charts import Pie from pyecharts import options as opts from pyecharts.render import make_snapshot from snapshot_phantomjs import snapshot def

  • iOS实现带指引线的饼状图效果(不会重叠)

    效果图 先上图(做出来的效果就是下图的样子) 1.效果图-w220 图中不论每个扇形多小,都可以从指引线处将指引的数据分割开来,不会重叠. 第一步 需要给图中数据做个模型 @interface DVFoodPieModel : NSObject /** 名称 */ @property (copy, nonatomic) NSString *name; /** 数值 */ @property (assign, nonatomic) CGFloat value; /** 比例 */ @propert

随机推荐