Python 爬虫多线程详解及实例代码

python是支持多线程的,主要是通过thread和threading这两个模块来实现的。thread模块是比较底层的模块,threading模块是对thread做了一些包装的,可以更加方便的使用。

虽然python的多线程受GIL限制,并不是真正的多线程,但是对于I/O密集型计算还是能明显提高效率,比如说爬虫。
下面用一个实例来验证多线程的效率。代码只涉及页面获取,并没有解析出来。

# -*-coding:utf-8 -*-
import urllib2, time
import threading

class MyThread(threading.Thread):
 def __init__(self, func, args):
  threading.Thread.__init__(self)
  self.args = args
  self.func = func

 def run(self):
  apply(self.func, self.args)

def open_url(url):
 request = urllib2.Request(url)
 html = urllib2.urlopen(request).read()
 print len(html)
 return html
if __name__ == '__main__':
 # 构造url列表
 urlList = []
 for p in range(1, 10):
  urlList.append('http://s.wanfangdata.com.cn/Paper.aspx?q=%E5%8C%BB%E5%AD%A6&p=' + str(p))
 # 一般方式
 n_start = time.time()
 for each in urlList:
  open_url(each)
 n_end = time.time()
 print 'the normal way take %s s' % (n_end-n_start)
# 多线程
 t_start = time.time()
 threadList = [MyThread(open_url, (url,)) for url in urlList]
 for t in threadList:
  t.setDaemon(True)
  t.start()
 for i in threadList:
  i.join()
 t_end = time.time()
 print 'the thread way take %s s' % (t_end-t_start)

分别用两种方式获取10个访问速度比较慢的网页,一般方式耗时50s,多线程耗时10s。
多线程代码解读:

# 创建线程类,继承Thread类
class MyThread(threading.Thread):
 def __init__(self, func, args):
  threading.Thread.__init__(self) # 调用父类的构造函数
  self.args = args
  self.func = func

 def run(self): # 线程活动方法
  apply(self.func, self.args)

threadList = [MyThread(open_url, (url,)) for url in urlList] # 调用线程类创建新线程,返回线程列表
 for t in threadList:
  t.setDaemon(True) # 设置守护线程,父线程会等待子线程执行完后再退出
  t.start() # 线程开启
 for i in threadList:
  i.join() # 等待线程终止,等子线程执行完后再执行父线程

以上就是本文的全部内容,希望对大家的学习有所帮助。

(0)

相关推荐

  • python实现多线程抓取知乎用户

    需要用到的包: beautifulsoup4 html5lib image requests redis PyMySQL pip安装所有依赖包: pip install \ Image \ requests \ beautifulsoup4 \ html5lib \ redis \ PyMySQL 运行环境需要支持中文 测试运行环境python3.5,不保证其他运行环境能完美运行 需要安装mysql和redis 配置 config.ini 文件,设置好mysql和redis,并且填写你的知乎帐号

  • Python实现的多线程http压力测试代码

    本文实例讲述了Python实现的多线程http压力测试代码.分享给大家供大家参考,具体如下: # Python version 3.3 __author__ = 'Toil' import sys, getopt import threading def httpGet(url, file): import http.client conn = http.client.HTTPConnection(url) conn.request("GET", file) r = conn.getr

  • 使用Python多线程爬虫爬取电影天堂资源

    最近花些时间学习了一下Python,并写了一个多线程的爬虫程序来获取电影天堂上资源的迅雷下载地址,代码已经上传到GitHub上了,需要的同学可以自行下载.刚开始学习python希望可以获得宝贵的意见. 先来简单介绍一下,网络爬虫的基本实现原理吧.一个爬虫首先要给它一个起点,所以需要精心选取一些URL作为起点,然后我们的爬虫从这些起点出发,抓取并解析所抓取到的页面,将所需要的信息提取出来,同时获得的新的URL插入到队列中作为下一次爬取的起点.这样不断地循环,一直到获得你想得到的所有的信息爬虫的任务

  • Golang与python线程详解及简单实例

    Golang与python线程详解及简单实例 在GO中,开启15个线程,每个线程把全局变量遍历增加100000次,因此预测结果是 15*100000=1500000. var sum int var cccc int var m *sync.Mutex func Count1(i int, ch chan int) { for j := 0; j < 100000; j++ { cccc = cccc + 1 } ch <- cccc } func main() { m = new(sync.

  • Python 多线程实例详解

    Python 多线程实例详解 多线程通常是新开一个后台线程去处理比较耗时的操作,Python做后台线程处理也是很简单的,今天从官方文档中找到了一个Demo. 实例代码: import threading, zipfile class AsyncZip(threading.Thread): def __init__(self, infile, outfile): threading.Thread.__init__(self) self.infile = infile self.outfile =

  • 深入理解 Python 中的多线程 新手必看

    示例1 我们将要请求五个不同的url: 单线程 import time import urllib2 defget_responses(): urls=[ 'http://www.baidu.com', 'http://www.amazon.com', 'http://www.ebay.com', 'http://www.alibaba.com', 'http://www.jb51.net' ] start=time.time() forurlinurls: printurl resp=urll

  • Python控制多进程与多线程并发数总结

    一.前言 本来写了脚本用于暴力破解密码,可是1秒钟尝试一个密码2220000个密码我的天,想用多线程可是只会一个for全开,难道开2220000个线程吗?只好学习控制线程数了,官方文档不好看,觉得结构不够清晰,网上找很多文章也都不很清晰,只有for全开线程,没有控制线程数的具体说明,最终终于根据多篇文章和官方文档算是搞明白基础的多线程怎么实现法了,怕长时间不用又忘记,找着麻烦就贴这了,跟我一样新手也可以参照参照. 先说进程和线程的区别: 地址空间:进程内的一个执行单元;进程至少有一个线程;它们共

  • Python 爬虫多线程详解及实例代码

    python是支持多线程的,主要是通过thread和threading这两个模块来实现的.thread模块是比较底层的模块,threading模块是对thread做了一些包装的,可以更加方便的使用. 虽然python的多线程受GIL限制,并不是真正的多线程,但是对于I/O密集型计算还是能明显提高效率,比如说爬虫. 下面用一个实例来验证多线程的效率.代码只涉及页面获取,并没有解析出来. # -*-coding:utf-8 -*- import urllib2, time import thread

  • Python heapq使用详解及实例代码

     Python heapq 详解 Python有一个内置的模块,heapq标准的封装了最小堆的算法实现.下面看两个不错的应用. 小顶堆(求TopK大) 话说需求是这样的: 定长的序列,求出TopK大的数据. import heapq import random class TopkHeap(object): def __init__(self, k): self.k = k self.data = [] def Push(self, elem): if len(self.data) < self

  • Python运算符重载详解及实例代码

    Python运算符重载 Python语言提供了运算符重载功能,增强了语言的灵活性,这一点与C++有点类似又有些不同.鉴于它的特殊性,今天就来讨论一下Python运算符重载. Python语言本身提供了很多魔法方法,它的运算符重载就是通过重写这些Python内置魔法方法实现的.这些魔法方法都是以双下划线开头和结尾的,类似于__X__的形式,python通过这种特殊的命名方式来拦截操作符,以实现重载.当Python的内置操作运用于类对象时,Python会去搜索并调用对象中指定的方法完成操作. 类可以

  • Python 实现随机数详解及实例代码

    Python3实现随机数 random是用于生成随机数的,我们可以利用它随机生成数字或者选择字符串. random.seed(x)改变随机数生成器的种子seed. 一般不必特别去设定seed,Python会自动选择seed. random.random() 用于生成一个随机浮点数n,0 <= n < 1 random.uniform(a,b) 用于生成一个指定范围内的随机浮点数,生成的随机整数a<=n<=b; random.randint(a,b) 用于生成一个指定范围内的整数,a

  • java多线程编程技术详解和实例代码

     java多线程编程技术详解和实例代码 1.   Java和他的API都可以使用并发. 可以指定程序包含不同的执行线程,每个线程都具有自己的方法调用堆栈和程序计数器,使得线程在与其他线程并发地执行能够共享程序范围内的资源,比如共享内存,这种能力被称为多线程编程(multithreading),在核心的C和C++语言中并不具备这种能力,尽管他们影响了JAVA的设计. 2.   线程的生命周期 新线程的生命周期从"新生"状态开始.程序启动线程前,线程一直是"新生"状态:

  • Python 字典的使用详解及实例代码

    目录 字典长什么样 字典内能放什么 访问字典内容 修改字典内容 删除字典数据 字典内置函数 字典是Python实现散列表数据结构的形式,表现映射的关系,一对一. 字典长什么样 {}这是一个空字典,可以看出字典是由两个花括号组成的. 在看这个{'a':1},这里面装了一对数据,'a'可称为键,1称为值 这个{'键1':'值1', '键2':'值2'}每一对数据 字典内能放什么 字典内的健是唯一的,在字典内所有内容中只存在一个,但值可以重复出现. 健只能是不变的值,比如字符串,数字,元组 值可以随意

  • 基于python爬虫数据处理(详解)

    一.首先理解下面几个函数 设置变量 length()函数 char_length() replace() 函数 max() 函数 1.1.设置变量 set @变量名=值 set @address='中国-山东省-聊城市-莘县'; select @address 1.2 .length()函数 char_length()函数区别 select length('a') ,char_length('a') ,length('中') ,char_length('中') 1.3. replace() 函数

  • Python 操作MySQL详解及实例

    Python 操作MySQL详解及实例 使用Python进行MySQL的库主要有三个,Python-MySQL(更熟悉的名字可能是MySQLdb),PyMySQL和SQLAlchemy. Python-MySQL资格最老,核心由C语言打造,接口精炼,性能最棒,缺点是环境依赖较多,安装复杂,近两年已停止更新,只支持Python2,不支持Python3. PyMySQL为替代Python-MySQL而生,纯python打造,接口与Python-MySQL兼容,安装方便,支持Python3. SQLA

  • scrapy处理python爬虫调度详解

    学习了简单的知识点,就会想要向有难度的问题挑战,这里必须要夸一夸小伙伴们.不过我们今天不需要做什么程序的测试,只用简单的两个代码对比,小伙伴们就能在其中体会两者的不同和难易程度.scrapy能否适合处理python爬虫调度的问题,小编直接说出答案小伙伴们也不能马上信服,下面就让我们在示例中找寻答案吧. 总的来说,需要使用代码来爬一些数据的大概分为两类人: 非程序员,需要爬一些数据来做毕业设计.市场调研等等,他们可能连 Python 都不是很熟: 程序员,需要设计大规模.分布式.高稳定性的爬虫系统

  • 一个入门级python爬虫教程详解

    前言 本文目的:根据本人的习惯与理解,用最简洁的表述,介绍爬虫的定义.组成部分.爬取流程,并讲解示例代码. 基础 爬虫的定义:定向抓取互联网内容(大部分为网页).并进行自动化数据处理的程序.主要用于对松散的海量信息进行收集和结构化处理,为数据分析和挖掘提供原材料. 今日t条就是一只巨大的"爬虫". 爬虫由URL库.采集器.解析器组成. 流程 如果待爬取的url库不为空,采集器会自动爬取相关内容,并将结果给到解析器,解析器提取目标内容后进行写入文件或入库等操作. 代码 第一步:写一个采集

随机推荐