python学习之panda数据分析核心支持库

前言

Python是一门实现数据可视化很好的语言,他们里面的很多库可以很好的画出图形,形象明了。

今天我们就来说说:Pandas数据分析核心支持库

初识Pandas:

Pandas 是 Python 语言的一个扩展程序库,用于数据分析。

Pandas 是一个开放源码、BSD 许可的库,提供高性能、易于使用的数据结构和数据分析工具。

Pandas 名字衍生自术语 “panel data”(面板数据)和 “Python data analysis”(Python 数据分析)。

Pandas 一个强大的分析结构化数据的工具集,基础是 Numpy(提供高性能的矩阵运算),其次数series,还有一个DataFrame,这三个比较常用。

Pandas 可以从各种文件格式比如 CSV、JSON、SQL、Microsoft Excel 导入数据。

Pandas 可以对各种数据进行运算操作,比如归并、再成形、选择,还有数据清洗和数据加工特征。

Pandas 广泛应用在学术、金融、统计学等各个数据分析领域。

Pandas的主体:

Pandas 的主要数据结构是 Series (一维数据)与 DataFrame(二维数据),这两种数据结构足以处理金融、统计、社会科学、工程等领域里的大多数典型用例。

Series:带标签的一维同构数组,一种类似于一维数组的对象,它由一组数据(各种Numpy数据类型)以及一组与之相关的数据标签(即索引)组成。

DataFrame:带标签,大小可变,二维异构表格。一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个索引)。

Pandas的安装:

终端输入,如果你跟我一样使用Anaconda中的Jupyter进行代表编写的话,也可以在Anaconda的终端里输入,之后就可以直接用了,他是Python中的一个库,使用不需要安装什么其他软件,拥有Python编译器即可。

pip install pandas

Pandas的应用:

1:导入pandas库

import pandas as pd

2:pandas之series

Pandas Series 类似表格中等一个列(column),类似于一维数组,可以保存任何数据类型 Series 由索引(index)和列组成,函数如下:

pandas.Series( data, index, dtype, name, copy)

参数说明:

data:一组数据(ndarray 类型)。

index:数据索引标签,如果不指定,默认从 0 开始。

dtype:数据类型,默认会自己判断。

name:设置名称。

copy:拷贝数据,默认为 False。

Demo:

FIrst:

import pandas as pd

a = ["shimmer", "zhuzhu", "recently祝祝"]

myvar = pd.Series(a)

print(myvar)

代码结果:

Second:可修改索引值、

Third:使用字典创建, key/value 对象,类似字典来创建 Series

Fourth:可以通过索引值的指定来取值

3:pandas之Dataframe

DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。DataFrame既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个索引)。

DataFrame 构造方法如下:

pandas.DataFrame( data, index, columns, dtype, copy)

参数说明:

data:一组数据(ndarray、series, map, lists, dict 等类型)。

index:索引值,或者可以称为行标签。

columns:列标签,默认为 RangeIndex (0, 1, 2, …, n) 。

dtype:数据类型。

copy:拷贝数据,默认为 False。

Demo:

First:指定列标

Second:列分开插入,通过字典的形式创建

Third:使用字典(key/value),其中字典的 key 为列名:

fourth:通过loc取值,类似于列表里x,index【number】取值

Fifth:可以返回多行数据,使用 [[ … ]] 格式,… 为各行的索引,以逗号隔开:

Sixth:指定索引值

Seventh:取指定索引值

本篇就到这吧,希望看完这篇文章对你有用。

总结

到此这篇关于python学习之panda数据分析核心支持库的文章就介绍到这了,更多相关python之panda模块内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 在Python中利用Pandas库处理大数据的简单介绍

    在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章<别老扯什么Hadoop了,你的数据根本不够大>指出:只有在超过5TB数据量的规模下,Hadoop才是一个合理的技术选择.这次拿到近亿条日志数据,千万级数据已经是关系型数据库的查询分析瓶颈,之前使用过Hadoop对大量文本进行分类,这次决定采用Python来处理数据: 硬件环境         CPU:3.5 GHz Intel Core i7         内存:32 GB HDDR 3 1600 MHz         硬

  • python中pandas.DataFrame的简单操作方法(创建、索引、增添与删除)

    前言 最近在网上搜了许多关于pandas.DataFrame的操作说明,都是一些基础的操作,但是这些操作组合起来还是比较费时间去正确操作DataFrame,花了我挺长时间去调整BUG的.我在这里做一些总结,方便你我他.感兴趣的朋友们一起来看看吧. 一.创建DataFrame的简单操作: 1.根据字典创造: In [1]: import pandas as pd In [3]: aa={'one':[1,2,3],'two':[2,3,4],'three':[3,4,5]} In [4]: bb=

  • 用Python的pandas框架操作Excel文件中的数据教程

    引言 本文的目的,是向您展示如何使用pandas来执行一些常见的Excel任务.有些例子比较琐碎,但我觉得展示这些简单的东西与那些你可以在其他地方找到的复杂功能同等重要.作为额外的福利,我将会进行一些模糊字符串匹配,以此来展示一些小花样,以及展示pandas是如何利用完整的Python模块系统去做一些在Python中是简单,但在Excel中却很复杂的事情的. 有道理吧?让我们开始吧. 为某行添加求和项 我要介绍的第一项任务是把某几列相加然后添加一个总和栏. 首先我们将excel 数据 导入到pa

  • Python pandas常用函数详解

    本文研究的主要是pandas常用函数,具体介绍如下. 1 import语句 import pandas as pd import numpy as np import matplotlib.pyplot as plt import datetime import re 2 文件读取 df = pd.read_csv(path='file.csv') 参数:header=None 用默认列名,0,1,2,3... names=['A', 'B', 'C'...] 自定义列名 index_col='

  • Python Pandas批量读取csv文件到dataframe的方法

    PYTHON Pandas批量读取csv文件到DATAFRAME 首先使用glob.glob获得文件路径.然后定义一个列表,读取文件后再使用concat合并读取到的数据. #读取数据 import pandas as pd import numpy as np import glob,os path=r'e:\tj\month\fx1806' file=glob.glob(os.path.join(path, "zq*.xls")) print(file) dl= [] for f i

  • python pandas dataframe 按列或者按行合并的方法

    concat 与其说是连接,更准确的说是拼接.就是把两个表直接合在一起.于是有一个突出的问题,是横向拼接还是纵向拼接,所以concat 函数的关键参数是axis . 函数的具体参数是: concat(objs,axis=0,join='outer',join_axes=None,ignore_index=False,keys=None,levels=None,names=None,verigy_integrity=False) objs 是需要拼接的对象集合,一般为列表或者字典 axis=0 是

  • Python中pandas dataframe删除一行或一列:drop函数详解

    用法:DataFrame.drop(labels=None,axis=0, index=None, columns=None, inplace=False) 在这里默认:axis=0,指删除index,因此删除columns时要指定axis=1: inplace=False,默认该删除操作不改变原数据,而是返回一个执行删除操作后的新dataframe: inplace=True,则会直接在原数据上进行删除操作,删除后就回不来了. 例子: >>>df = pd.DataFrame(np.a

  • python获取Pandas列名的几种方法

    获取DataFrame虽然是一个比较简单的操作,但是有时候到手边就是写不出来,所以在这里总结记录一下: 1.链表推倒式 data = pd.read_csv('data/Receipt code January minute trading volume.csv') print([column for column in data]) #打印结果 ['COUNT', 'SUCC', 'FAIL', 'WAIT PAY', 'SUCCRatio', 'time'] 2.通过columns字段获取,

  • Python遍历pandas数据方法总结

    前言 Pandas是python的一个数据分析包,提供了大量的快速便捷处理数据的函数和方法.其中Pandas定义了Series 和 DataFrame两种数据类型,这使数据操作变得更简单.Series 是一种一维的数据结构,类似于将列表数据值与索引值相结合.DataFrame 是一种二维的数据结构,接近于电子表格或者mysql数据库的形式. 在数据分析中不可避免的涉及到对数据的遍历查询和处理,比如我们需要将dataframe两列数据两两相除,并将结果存储于一个新的列表中.本文通过该例程介绍对pa

  • python pandas 如何替换某列的一个值

    摘要:本文主要是讲解怎么样替换某一列的一个值. 应用场景: 假如我们有以下的数据集: 我们想把里面不是pre的字符串全部换成Nonpre,我们要怎么做呢? 做法很简单. df['col2']=df['col1'] df.loc[df['col1'] !=' pre','col2']=Nonpre 以上这篇python pandas 如何替换某列的一个值就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

随机推荐