java+opencv实现人脸识别功能

背景:最近需要用到人脸识别,但又不花钱使用现有的第三方人脸识别接口,为此使用opencv结合java进行人脸识别(ps:opencv是开源的,使用它来做人脸识别存在一定的误差,效果一般)。

1.安装opencv
官网地址:https://opencv.org/ , 由于官网下载速度是真的慢

百度网盘:

链接: https://pan.baidu.com/s/1RpsP-I7v8pP2dkqALDw7FQ

提取码: pq7v

如果是官网下载,就无脑安装就行了,安装完毕后。

将图一的两个文件复制到图二中。


从我网盘下载的,忽略这些。

2.在项目中引入pom依赖

<!-- opencv + javacv + ffmpeg-->
        <dependency>
            <groupId>org.bytedeco.javacpp-presets</groupId>
            <artifactId>ffmpeg</artifactId>
            <version>4.1-1.4.4</version>
        </dependency>
        <dependency>
            <groupId>org.bytedeco</groupId>
            <artifactId>javacv</artifactId>
            <version>1.4.4</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.bytedeco.javacpp-presets/ffmpeg-platform -->
        <dependency>
            <groupId>org.bytedeco.javacpp-presets</groupId>
            <artifactId>ffmpeg-platform</artifactId>
            <version>4.1-1.4.4</version>
        </dependency>

        <!-- 视频摄像头 -->
        <!-- https://mvnrepository.com/artifact/org.bytedeco/javacv-platform -->
        <dependency>
            <groupId>org.bytedeco</groupId>
            <artifactId>javacv-platform</artifactId>
            <version>1.4.4</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.bytedeco.javacpp-presets/opencv-platform -->
        <dependency>
            <groupId>org.bytedeco.javacpp-presets</groupId>
            <artifactId>opencv-platform</artifactId>
            <version>4.0.1-1.4.4</version>
        </dependency>

1.导入库依赖
File --> Project Structure,点击Modules,选择需要使用opencv.jar的项目。


选择直接opencv安装路径


2.java代码demo

package org.Litluecat.utils;

import org.apache.commons.lang.StringUtils;
import org.opencv.core.*;
import org.opencv.highgui.HighGui;
import org.opencv.highgui.ImageWindow;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.objdetect.CascadeClassifier;
import org.opencv.videoio.VideoCapture;
import org.opencv.videoio.VideoWriter;
import org.opencv.videoio.Videoio;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.Arrays;

/**
 * 人脸比对工具类
 * @author Litluecat
 * @Title: Opencv 图片人脸识别、实时摄像头人脸识别
**/
public class FaceVideo {

    private static final Logger log = LoggerFactory.getLogger(FaceVideo.class);

    private static final String endImgUrl = "C:\\Users\\lenovo\\Desktop\\";
    /**
     * opencv的人脸识别xml文件路径
     */
    private static final String faceDetectorXML2URL = "D:\\Sofeware\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt.xml";
    /**
     * opencv的人眼识别xml文件路径
     */
    private static final String eyeDetectorXML2URL = "D:\\Sofeware\\opencv\\sources\\data\\haarcascades\\haarcascade_eye.xml";
    /**
     * 直方图大小,越大精度越高,运行越慢
     */
    private static int Matching_Accuracy = 100000;
    /**
     * 初始化人脸探测器
     */
    private static CascadeClassifier faceDetector;
    /**
     * 初始化人眼探测器
     */
    private static CascadeClassifier eyeDetector;

    private static int i=0;

    static {
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
        faceDetector = new CascadeClassifier(faceDetectorXML2URL);
        eyeDetector = new CascadeClassifier(eyeDetectorXML2URL);
    }

    public static void main(String[] args) {
        log.info("开始人脸匹配");
        long begin = System.currentTimeMillis();
        // 1- 从摄像头实时人脸识别,识别成功保存图片到本地
        try{
            getVideoFromCamera(endImgUrl + "2.jpg");
            //仅用于强制抛异常,从而关闭GUI界面
            Thread.sleep(1000);
            int err = 1/0;

            // 2- 比对本地2张图的人脸相似度 (越接近1越相似)
//            double compareHist = FaceVideo.compare_image(endImgUrl + "test1.jpg" , endImgUrl + "face.jpg");
//            log.info("匹配度:{}",compareHist);
//            if (compareHist > 0.72) {
//                log.info("人脸匹配");
//            } else {
//                log.info("人脸不匹配");
//            }

        }catch (Exception e){
            log.info("开始强制关闭");
            log.info("人脸匹配结束,总耗时:{}ms",(System.currentTimeMillis()-begin));
            System.exit(0);
        }
    }

    /**
     * OpenCV-4.1.1 从摄像头实时读取
     * @param targetImgUrl 比对身份证图片
     * @return: void
     * @date: 2019年8月19日 17:20:13
     */
    public static void getVideoFromCamera(String targetImgUrl) {
        //1 如果要从摄像头获取视频 则要在 VideoCapture 的构造方法写 0
        VideoCapture capture = new VideoCapture(0);
        Mat video = new Mat();
        int index = 0;
        if (capture.isOpened()) {
            while(i<3) {
                // 匹配成功3次退出
                capture.read(video);
                HighGui.imshow("实时人脸识别", getFace(video, targetImgUrl));
                //窗口延迟等待100ms,返回退出按键
                index = HighGui.waitKey(100);
                //当退出按键为Esc时,退出窗口
                if (index == 27) {
                    break;
                }
            }
        }else{
            log.info("摄像头未开启");
        }
        //该窗口销毁不生效,该方法存在问题
        HighGui.destroyAllWindows();
        capture.release();
        return;
    }

    /**
     * OpenCV-4.1.0 人脸识别
     * @param image 待处理Mat图片(视频中的某一帧)
     * @param targetImgUrl 匹配身份证照片地址
     * @return 处理后的图片
     */
    public static Mat getFace(Mat image, String targetImgUrl) {
        MatOfRect face = new MatOfRect();
        faceDetector.detectMultiScale(image, face);
        Rect[] rects=face.toArray();
        log.info("匹配到 "+rects.length+" 个人脸");
        if(rects != null && rects.length >= 1) {
            i++;
            if(i==3) {
                // 获取匹配成功第3次的照片
                Imgcodecs.imwrite(endImgUrl + "face.jpg", image);
                FaceVideoThread faceVideoThread = new FaceVideoThread(targetImgUrl , endImgUrl + "face.jpg");
                new Thread(faceVideoThread,"人脸比对线程").start();
            }
        }
        return image;
    }

    /**
     * 人脸截图
     * @param img
     * @return
     */
    public static String face2Img(String img) {
        String faceImg = null;
        Mat image0 = Imgcodecs.imread(img);
        Mat image1 = new Mat();
        // 灰度化
        Imgproc.cvtColor(image0, image1, Imgproc.COLOR_BGR2GRAY);
        // 探测人脸
        MatOfRect faceDetections = new MatOfRect();
        faceDetector.detectMultiScale(image1, faceDetections);
        // rect中人脸图片的范围
        for (Rect rect : faceDetections.toArray()) {
            faceImg = img+"_.jpg";
            // 进行图片裁剪
            imageCut(img, faceImg, rect.x, rect.y, rect.width, rect.height);
        }
        if(null == faceImg){
            log.info("face2Img未识别出该图像中的人脸,img={}",img);
        }
        return faceImg;
    }

    /**
     * 人脸比对
     * @param img_1
     * @param img_2
     * @return
     */
    public static double compare_image(String img_1, String img_2) {
        Mat mat_1 = conv_Mat(img_1);
        Mat mat_2 = conv_Mat(img_2);
        Mat hist_1 = new Mat();
        Mat hist_2 = new Mat();

        //颜色范围
        MatOfFloat ranges = new MatOfFloat(0f, 256f);
        //直方图大小, 越大匹配越精确 (越慢)
        MatOfInt histSize = new MatOfInt(Matching_Accuracy);

        Imgproc.calcHist(Arrays.asList(mat_1), new MatOfInt(0), new Mat(), hist_1, histSize, ranges);
        Imgproc.calcHist(Arrays.asList(mat_2), new MatOfInt(0), new Mat(), hist_2, histSize, ranges);

        // CORREL 相关系数
        double res = Imgproc.compareHist(hist_1, hist_2, Imgproc.CV_COMP_CORREL);
        return res;
    }

    /**
     * 灰度化人脸
     * @param img
     * @return
     */
    public static Mat conv_Mat(String img) {
        if(StringUtils.isBlank(img)){
            return null;
        }
        Mat image0 = Imgcodecs.imread(img);
        Mat image1 = new Mat();
        //Mat image2 = new Mat();
        // 灰度化
        Imgproc.cvtColor(image0, image1, Imgproc.COLOR_BGR2GRAY);
        //直方均匀
        //Imgproc.equalizeHist(image1, image2);

        // 探测人脸
        MatOfRect faceDetections = new MatOfRect();
        faceDetector.detectMultiScale(image1, faceDetections);

        //探测人眼
//        MatOfRect eyeDetections = new MatOfRect();
//        eyeDetector.detectMultiScale(image1, eyeDetections);

        // rect中人脸图片的范围
        Mat face = null;
        for (Rect rect : faceDetections.toArray()) {

            //给图片上画框框 参数1是图片 参数2是矩形 参数3是颜色 参数四是画出来的线条大小
            //Imgproc.rectangle(image0,rect,new Scalar(0,0,255),2);
            //输出图片
            //Imgcodecs.imwrite(img+"_.jpg",image0);

            face = new Mat(image1, rect);
        }
        if(null == face){
            log.info("conv_Mat未识别出该图像中的人脸,img={}",img);
        }
        return face;
    }

}

这边的人脸识别是另外其线程进行比对,代码如下。

package org.Litluecat.utils;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class FaceVideoThread implements Runnable{
    private static final Logger log = LoggerFactory.getLogger(FaceVideoThread.class);

    private String oneImgUrl = null;
    private String otherImgUrl = null;
    public FaceVideoThread(String oneImgUrl, String otherImgUrl){
        this.oneImgUrl = oneImgUrl;
        this.otherImgUrl = otherImgUrl;
    }
    @Override
    public void run() {
        try {
            double compareHist = FaceVideo.compare_image(oneImgUrl , otherImgUrl);
            log.info("匹配度:{}",compareHist);
            if (compareHist > 0.72) {
                log.info("人脸匹配");
            } else {
                log.info("人脸不匹配");
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

提醒:如果运行异常,请添加你opencv的安装地址-Djava.library.path=D:\Sofeware\opencv\build\java\x64;

总结:java+opencv做人脸识别的精度不够,我也是有待学习,如果大家有更好的方式,能将opencv更好的展现出来,并达到更精准的人脸识别,请分享给我,谢谢。

到此这篇关于java+opencv实现人脸识别的文章就介绍到这了,更多相关java opencv人脸识别内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • OPENCV+JAVA实现人脸识别

    本文实例为大家分享了JAVA实现人脸识别的具体代码,供大家参考,具体内容如下 官方下载 安装文件 ,以win7为例,下载opencv-2.4.13.3-vc14.exe 安装后,在build目录下 D:\opencv\build\java,获取opencv-2413.jar,copy至项目目录 同时需要dll文件 与 各 识别xml文件,进行不同特征的识别(人脸,侧脸,眼睛等) dll目录:D:\opencv\build\java\x64\opencv_java2413.dll xml目录:D:

  • Java OpenCV实现人脸识别过程详解

    准备 : 下载openCV安装包 :  https://opencv.org/ 安装包安装之后支持多种语言环境,此处使用Java,在Eclipse中引入 openCV目录下的java/opencv-320.jar,同时配置openCV库路径. Eclipse配置openCV 代码实现 : package test; import org.opencv.core.Core; import org.opencv.core.Mat; import org.opencv.core.MatOfRect;

  • Java OpenCV4.0.0实现实时人脸识别

    本文实例为大家分享了javaOpenCV-4.0.0 实时人脸识别,供大家参考,具体内容如下 package com.xu.opencv; import org.opencv.core.Core; import org.opencv.core.Mat; import org.opencv.core.MatOfRect; import org.opencv.core.Point; import org.opencv.core.Rect; import org.opencv.core.Scalar;

  • OpenCV Java实现人脸识别和裁剪功能

    本文实例为大家分享了OpenCV Java实现人脸识别和裁剪的具体代码,供大家参考,具体内容如下 安装及配置 1.首先安装OpenCV,地址 这里我下载的是Windows版的3.4.5 然后安装即可-- 2.Eclipse配置OpenCV Window->Preferences->Java->User Libraries New输入你的Libraries名 这里我的安装目录是D:\OpenCV,所以是: 然后引入dll,我是64位机子,所以是: Ok,下面创建Java项目做Java与Op

  • java+opencv实现人脸识别功能

    背景:最近需要用到人脸识别,但又不花钱使用现有的第三方人脸识别接口,为此使用opencv结合java进行人脸识别(ps:opencv是开源的,使用它来做人脸识别存在一定的误差,效果一般). 1.安装opencv 官网地址:https://opencv.org/ , 由于官网下载速度是真的慢 百度网盘: 链接: https://pan.baidu.com/s/1RpsP-I7v8pP2dkqALDw7FQ 提取码: pq7v 如果是官网下载,就无脑安装就行了,安装完毕后. 将图一的两个文件复制到图

  • springboot集成opencv实现人脸识别功能的详细步骤

    前言 项目中检测人脸图片是否合法的功能,之前用的是百度的人脸识别接口,由于成本高昂不得不寻求替代方案. 什么是opencv? OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉和机器学习软件库,可以运行在Linux.Windows.Android和Mac OS操作系统上.轻量级而且高效--由一系列 C 函数和少量 C++ 类构成,同时提供了Python.Java.MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法. 项目集成步骤 由于项目是放在Linux系统中跑的

  • python利用Opencv实现人脸识别功能

    本文实例为大家分享了python利用Opencv实现人脸识别功能的具体代码,供大家参考,具体内容如下 首先:需要在在自己本地安装opencv具体步骤可以问度娘 如果从事于开发中的话建议用第三方的人脸识别(推荐阿里) 1.视频流中进行人脸识别 # -*- coding: utf-8 -*- import cv2 import sys from PIL import Image def CatchUsbVideo(window_name, camera_idx): cv2.namedWindow(w

  • 手把手教你利用opencv实现人脸识别功能(附源码+文档)

    目录 一.环境 二.使用Haar级联进行人脸检测 三.Haar级联结合摄像头 四.使用SSD的人脸检测 五. SSD结合摄像头人脸检测 六.结语 一.环境 pip install opencv-python python3.9 pycharm2020 人狠话不多,直接上代码,注释在代码里面,不说废话. 二.使用Haar级联进行人脸检测 测试案例: 代码:(记得自己到下载地址下载对应的xml) # coding=gbk """ 作者:川川 @时间 : 2021/9/5 16:3

  • python调用OpenCV实现人脸识别功能

    Python调用OpenCV实现人脸识别,供大家参考,具体内容如下 硬件环境: Win10 64位 软件环境: Python版本:2.7.3 IDE:JetBrains PyCharm 2016.3.2 Python库: 1.1) opencv-python(3.2.0.6) 搭建过程: OpenCV Python库: 1. PyCharm的插件源中选择opencv-python(3.2.0.6)库安装 题外话:Python入门Tips PS1:如何安装whl文件 1.先安装PIP 2.CMD命

  • Python基于OpenCV库Adaboost实现人脸识别功能详解

    本文实例讲述了Python基于OpenCV库Adaboost实现人脸识别功能.分享给大家供大家参考,具体如下: 以前用Matlab写神经网络的面部眼镜识别算法,研究算法逻辑,采集大量训练数据,迭代,计算各感知器的系数...相当之麻烦~而现在运用调用pythonOpenCV库Adaboost算法,无需知道算法逻辑,无需进行模型训练,人脸识别变得相当之简单了. 需要用到的库是opencv(open source computer vision),下载安装方式如下: 使用pip install num

  • Python下应用opencv 实现人脸检测功能

    使用OpenCV's Haar cascades作为人脸检测,因为他做好了库,我们只管使用. 代码简单,除去注释,总共有效代码只有10多行. 所谓库就是一个检测人脸的xml 文件,可以网上查找,下面是一个地址: https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml 如何构造这个库,学习完本文后可以参考: http://note.sonots.com/Sc

  • 用Python实现简单的人脸识别功能步骤详解

    前言 让我的电脑认识我,我的电脑只有认识我,才配称之为我的电脑! 今天,我们用Python实现简单的人脸识别技术! Python里,简单的人脸识别有很多种方法可以实现,依赖于python胶水语言的特性,我们通过调用包可以快速准确的达成这一目的.这里介绍的是准确性比较高的一种. 一.首先 梳理一下实现人脸识别需要进行的步骤: 流程大致如此,在此之前,要先让人脸被准确的找出来,也就是能准确区分人脸的分类器,在这里我们可以用已经训练好的分类器,网上种类较全,分类准确度也比较高,我们也可以节约在这方面花

  • 使用Python实现简单的人脸识别功能(附源码)

    目录 前言 一.首先 二.接下来 1.对照人脸获取 2. 通过算法建立对照模型 3.识别 前言 今天,我们用Python实现简单的人脸识别技术! Python里,简单的人脸识别有很多种方法可以实现,依赖于python胶水语言的特性,我们通过调用包可以快速准确的达成这一目的.这里介绍的是准确性比较高的一种. 一.首先 梳理一下实现人脸识别需要进行的步骤: 流程大致如此,在此之前,要先让人脸被准确的找出来,也就是能准确区分人脸的分类器,在这里我们可以用已经训练好的分类器,网上种类较全,分类准确度也比

随机推荐