python使用RNN实现文本分类

本文实例为大家分享了使用RNN进行文本分类,python代码实现,供大家参考,具体内容如下

1、本博客项目由来是oxford 的nlp 深度学习课程第三周作业,作业要求使用LSTM进行文本分类。和上一篇CNN文本分类类似,本此代码风格也是仿照sklearn风格,三步走形式(模型实体化,模型训练和模型预测)但因为训练时间较久不知道什么时候训练比较理想,因此在次基础上加入了继续训练的功能。

2、构造文本分类的rnn类,(保存文件为ClassifierRNN.py)

2.1 相应配置参数因为较为繁琐,不利于阅读,因此仿照tensorflow源码形式,将代码分成 网络配置参数 nn_config 和计算配置参数: calc_config,也相应声明了其对应的类:NN_config,CALC_config。

2.2 声明 ClassifierRNN类,该类的主要函数有:(init, build_inputs, build_rnns, build_loss, build_optimizer, random_batches,fit, load_model, predict_accuracy, predict),代码如下:

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import os
import time
class NN_config(object):
  def __init__(self,num_seqs=1000,num_steps=10,num_units=128,num_classes = 8,\
        num_layers = 1,embedding_size=100,vocab_size = 10000,\
        use_embeddings=False,embedding_init=None):
    self.num_seqs  = num_seqs
    self.num_steps = num_steps
    self.num_units = num_units
    self.num_classes = num_classes
    self.num_layers = num_layers
    self.vocab_size = vocab_size
    self.embedding_size = embedding_size
    self.use_embeddings = use_embeddings
    self.embedding_init = embedding_init

class CALC_config(object):
  def __init__(self,batch_size=64,num_epoches = 20,learning_rate = 1.0e-3, \
         keep_prob=0.5,show_every_steps = 10,save_every_steps=100):
    self.batch_size   = batch_size
    self.num_epoches  = num_epoches
    self.learning_rate = learning_rate
    self.keep_prob   = keep_prob
    self.show_every_steps = show_every_steps
    self.save_every_steps = save_every_steps

class ClassifierRNN(object):
  def __init__(self, nn_config, calc_config):
    # assign revalent parameters
    self.num_seqs  = nn_config.num_seqs
    self.num_steps = nn_config.num_steps
    self.num_units = nn_config.num_units
    self.num_layers = nn_config.num_layers
    self.num_classes  = nn_config.num_classes
    self.embedding_size = nn_config.embedding_size
    self.vocab_size   = nn_config.vocab_size
    self.use_embeddings = nn_config.use_embeddings
    self.embedding_init = nn_config.embedding_init
    # assign calc ravalant values
    self.batch_size   = calc_config.batch_size
    self.num_epoches  = calc_config.num_epoches
    self.learning_rate = calc_config.learning_rate
    self.train_keep_prob= calc_config.keep_prob
    self.show_every_steps = calc_config.show_every_steps
    self.save_every_steps = calc_config.save_every_steps
    # create networks models
    tf.reset_default_graph()
    self.build_inputs()
    self.build_rnns()
    self.build_loss()
    self.build_optimizer()
    self.saver = tf.train.Saver()

  def build_inputs(self):
    with tf.name_scope('inputs'):
      self.inputs = tf.placeholder(tf.int32, shape=[None,self.num_seqs],\
                                name='inputs')
      self.targets = tf.placeholder(tf.int32, shape=[None, self.num_classes],\
                                name='classes')
      self.keep_prob = tf.placeholder(tf.float32,name='keep_prob')
      self.embedding_ph = tf.placeholder(tf.float32, name='embedding_ph')

      if self.use_embeddings == False:
        self.embeddings = tf.Variable(tf.random_uniform([self.vocab_size,\
                self.embedding_size],-0.1,0.1),name='embedding_flase')
        self.rnn_inputs = tf.nn.embedding_lookup(self.embeddings,self.inputs)
      else:
        embeddings = tf.Variable(tf.constant(0.0,shape=[self.vocab_size,self.embedding_size]),\
                              trainable=False,name='embeddings_true')
        self.embeddings = embeddings.assign(self.embedding_ph)
        self.rnn_inputs = tf.nn.embedding_lookup(self.embeddings,self.inputs)
        print('self.rnn_inputs.shape:',self.rnn_inputs.shape)

  def build_rnns(self):
    def get_a_cell(num_units,keep_prob):
      rnn_cell = tf.contrib.rnn.BasicLSTMCell(num_units=num_units)
      drop = tf.contrib.rnn.DropoutWrapper(rnn_cell, output_keep_prob=keep_prob)
      return drop
    with tf.name_scope('rnns'):
      self.cell = tf.contrib.rnn.MultiRNNCell([get_a_cell(self.num_units,self.keep_prob) for _ in range(self.num_layers)])
      self.initial_state = self.cell.zero_state(self.batch_size,tf.float32)
      self.outputs, self.final_state = tf.nn.dynamic_rnn(self.cell,tf.cast(self.rnn_inputs,tf.float32),\
       initial_state = self.initial_state )
      print('rnn_outputs',self.outputs.shape)

  def build_loss(self):
    with tf.name_scope('loss'):
      self.logits = tf.contrib.layers.fully_connected(inputs = tf.reduce_mean(self.outputs, axis=1), \
                      num_outputs = self.num_classes, activation_fn = None)
      print('self.logits.shape:',self.logits.shape)
      self.cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.logits,\
                    labels = self.targets))
      print('self.cost.shape',self.cost.shape)
      self.predictions = self.logits
      self.correct_predictions = tf.equal(tf.argmax(self.predictions, axis=1), tf.argmax(self.targets, axis=1))
      self.accuracy = tf.reduce_mean(tf.cast(self.correct_predictions,tf.float32))
      print(self.cost.shape)
      print(self.correct_predictions.shape)

  def build_optimizer(self):
    with tf.name_scope('optimizer'):
      self.optimizer = tf.train.AdamOptimizer(self.learning_rate).minimize(self.cost)

  def random_batches(self,data,shuffle=True):
    data = np.array(data)
    data_size = len(data)
    num_batches_per_epoch = int(data_size/self.batch_size)

    #del data
    for epoch in range(self.num_epoches):
      if shuffle :
        shuffle_index = np.random.permutation(np.arange(data_size))
        shuffled_data = data[shuffle_index]
      else:
        shuffled_data = data
      for batch_num in range(num_batches_per_epoch):
        start = batch_num * self.batch_size
        end  = min(start + self.batch_size,data_size)
        yield shuffled_data[start:end] 

  def fit(self,data,restart=False):
    if restart :
      self.load_model()
    else:
      self.session = tf.Session()
      self.session.run(tf.global_variables_initializer())
    with self.session as sess:
      step = 0
      accuracy_list = []
      # model saving
      save_path = os.path.abspath(os.path.join(os.path.curdir, 'models'))
      if not os.path.exists(save_path):
        os.makedirs(save_path)
      plt.ion()
      #new_state = sess.run(self.initial_state)
      new_state = sess.run(self.initial_state)
      batches = self.random_batches(data)
      for batch in batches:
        x,y = zip(*batch)
        x = np.array(x)
        y = np.array(y)
        print(len(x),len(y),step)
        step += 1
        start = time.time()
        if self.use_embeddings == False:
          feed = {self.inputs :x,
            self.targets:y,
            self.keep_prob : self.train_keep_prob,
            self.initial_state: new_state}
        else:
          feed = {self.inputs :x,
            self.targets:y,
            self.keep_prob : self.train_keep_prob,
            self.initial_state: new_state,
            self.embedding_ph: self.embedding_init}
        batch_loss, new_state, batch_accuracy , _ = sess.run([self.cost,self.final_state,\
                              self.accuracy, self.optimizer],feed_dict = feed)
        end = time.time()
        accuracy_list.append(batch_accuracy)
        # control the print lines
        if step%self.show_every_steps == 0:
          print('steps/epoch:{}/{}...'.format(step,self.num_epoches),
            'loss:{:.4f}...'.format(batch_loss),
            '{:.4f} sec/batch'.format((end - start)),
            'batch_Accuracy:{:.4f}...'.format(batch_accuracy)
            )
          plt.plot(accuracy_list)
          plt.pause(0.5)
        if step%self.save_every_steps == 0:
          self.saver.save(sess,os.path.join(save_path, 'model') ,global_step = step)
      self.saver.save(sess, os.path.join(save_path, 'model'), global_step=step) 

  def load_model(self, start_path=None):
    if start_path == None:
      model_path = os.path.abspath(os.path.join(os.path.curdir,"models"))
      ckpt = tf.train.get_checkpoint_state(model_path)
      path = ckpt.model_checkpoint_path
      print("this is the start path of model:",path)
      self.session = tf.Session()
      self.saver.restore(self.session, path)
      print("Restored model parameters is complete!")

    else:
      self.session = tf.Session()
      self.saver.restore(self.session,start_path)
      print("Restored model parameters is complete!")

  def predict_accuracy(self,data,test=True):
    # loading_model
    self.load_model()
    sess = self.session
    iterations = 0
    accuracy_list = []
    predictions = []
    epoch_temp = self.num_epoches
    self.num_epoches = 1
    batches = self.random_batches(data,shuffle=False)
    for batch in batches:
      iterations += 1
      x_inputs, y_inputs = zip(*batch)
      x_inputs = np.array(x_inputs)
      y_inputs = np.array(y_inputs)
      if self.use_embeddings == False:
        feed = {self.inputs: x_inputs,
            self.targets: y_inputs,
            self.keep_prob: 1.0}
      else:
        feed = {self.inputs: x_inputs,
            self.targets: y_inputs,
            self.keep_prob: 1.0,
            self.embedding_ph: self.embedding_init}
      to_train = [self.cost, self.final_state, self.predictions,self.accuracy]
      batch_loss,new_state,batch_pred,batch_accuracy = sess.run(to_train, feed_dict = feed)
      accuracy_list.append(np.mean(batch_accuracy))
      predictions.append(batch_pred)
      print('The trainning step is {0}'.format(iterations),\
         'trainning_accuracy: {:.3f}'.format(accuracy_list[-1]))        

    accuracy = np.mean(accuracy_list)
    predictions = [list(pred) for pred in predictions]
    predictions = [p for pred in predictions for p in pred]
    predictions = np.array(predictions)
    self.num_epoches = epoch_temp
    if test :
      return predictions, accuracy
    else:
      return accuracy       

  def predict(self, data):
    # load_model
    self.load_model()
    sess = self.session
    iterations = 0
    predictionss = []
    epoch_temp = self.num_epoches
    self.num_epoches = 1
    batches = self.random_batches(data)
    for batch in batches:
      x_inputs = batch
      if self.use_embeddings == False:
        feed = {self.inputs : x_inputs,
            self.keep_prob:1.0}
      else:
        feed = {self.inputs : x_inputs,
            self.keep_prob:1.0,
            self.embedding_ph: self.embedding_init}
      batch_pred = sess.run([self.predictions],feed_dict=feed)
      predictions.append(batch_pred)

    predictions = [list(pred) for pred in predictions]
    predictions = [p for pred in predictions for p in pred]
    predictions = np.array(predictions)
    return predictions

3、 进行模型数据的导入以及处理和模型训练,集中在一个处理文件中(sampling_trainning.py)
相应代码如下:

ps:在下面文档用用到glove的文档,这个可网上搜索进行相应的下载,下载后需要将glove对应的生成格式转化成word2vec对应的格式,就是在文件头步加入一行 两个整数(字典的数目和嵌入的特征长度),也可用python库自带的转化工具,网上进行相应使用方法的搜索便可。

import numpy as np
import os
import time
import matplotlib.pyplot as plt
import tensorflow as tf
import re
import urllib.request
import zipfile
import lxml.etree
from collections import Counter
from random import shuffle
from gensim.models import KeyedVectors

# Download the dataset if it's not already there
if not os.path.isfile('ted_en-20160408.zip'):
  urllib.request.urlretrieve("https://wit3.fbk.eu/get.php?path=XML_releases/xml/ted_en-20160408.zip&filename=ted_en-20160408.zip", filename="ted_en-20160408.zip")

# extract both the texts and the labels from the xml file
with zipfile.ZipFile('ted_en-20160408.zip', 'r') as z:
  doc = lxml.etree.parse(z.open('ted_en-20160408.xml', 'r'))
texts = doc.xpath('//content/text()')
labels = doc.xpath('//head/keywords/text()')
del doc

print("There are {} input texts, each a long string with text and punctuation.".format(len(texts)))
print("")
print(texts[0][:100])

# method remove unused words and labels
inputs_text = [ re.sub(r'\([^)]*\)',' ', text) for text in texts]
inputs_text = [re.sub(r':', ' ', text) for text in inputs_text]
#inputs_text = [text.split() for text in inputs_text]
print(inputs_text[0][0:100])

inputs_text = [ text.lower() for text in texts]
inputs_text = [ re.sub(r'([^a-z0-9\s])', r' <\1_token> ',text) for text in inputs_text]
#input_texts = [re.sub(r'([^a-z0-9\s])', r' <\1_token> ', input_text) for input_text in input_texts]
inputs_text = [text.split() for text in inputs_text]
print(inputs_text[0][0:100])

# label procession
label_lookup = ['ooo','Too','oEo','ooD','TEo','ToD','oED','TED']
new_label = []
for i in range(len(labels)):
  labels_pre = ['o','o','o']
  label = labels[i].split(', ')
  #print(label,i)
  if 'technology' in label:
    labels_pre[0] = 'T'
  if 'entertainment' in label:
    labels_pre[1] = 'E'
  if 'design' in label:
    labels_pre[2] = 'D'
  labels_temp = ''.join(labels_pre)
  label_index = label_lookup.index(labels_temp)
  new_label.append(label_index)

print('the length of labels:{0}'.format(len(new_label)))
print(new_label[0:50])
labels_index = np.zeros((len(new_label),8))
#for i in range(labels_index.shape[0]):
#  labels_index[i,new_label[i]] = 1
labels_index[range(len(new_label)),new_label] = 1.0
print(labels_index[0:10])

# feature selections
unions = list(zip(inputs_text,labels_index))
unions = [union for union in unions if len(union[0]) >300]
print(len(unions))
inputs_text, labels_index = zip(*unions)
inputs_text = list(inputs_text)
labels = list(labels_index)
print(inputs_text[0][0:50])
print(labels_index[0:10])

# feature filttering

all_context = [word for text in inputs_text for word in text]
print('the present datas word is :{0}'.format(len(all_context)))
words_count = Counter(all_context)
most_words = [word for word, count in words_count.most_common(50)]
once_words = [word for word, count in words_count.most_common() if count == 1]
print('there {0} words only once to be removed'.format(len(once_words)))
print(most_words)
#print(once_words)
remove_words = set(most_words + once_words)
#print(remove_words)

inputs_new = [[word for word in text if word not in remove_words] for text in inputs_text]
new_all_counts =[word for text in inputs_new for word in text]
print('there new all context length is:{0}'.format(len(new_all_counts)))

# word2index and index2word processings
words_voca = set([word for text in inputs_new for word in text])
word2index = {}
index2word = {}
for i, word in enumerate(words_voca):
  word2index[word] = i
  index2word[i] = word
inputs_index = []
for text in inputs_new:
  inputs_index.append([word2index[word] for word in text])
print(len(inputs_index))
print(inputs_index[0][0:100])

model_glove = KeyedVectors.load_word2vec_format('glove.6B.300d.txt', binary=False)

n_features = 300
embeddings = np.random.uniform(-0.1,0.1,(len(word2index),n_features))
inwords = 0
for word in words_voca:
  if word in model_glove.vocab:
    inwords += 1
    embeddings[word2index[word]] = model_glove[word]
print('there {} words in model_glove'.format(inwords))
print('The voca_word in presents text is:{0}'.format(len(words_voca)))
print('the precentage of words in glove is:{0}'.format(np.float(inwords)/len(words_voca)))

# truncate the sequence length
max_length = 1000
inputs_concat = []
for text in inputs_index:
  if len(text)>max_length:
    inputs_concat.append(text[0:max_length])
  else:
    inputs_concat.append(text + [0]*(max_length-len(text)))
print(len(inputs_concat))
inputs_index = inputs_concat
print(len(inputs_index))

# sampling the train data use category sampling
num_class = 8
label_unions = list(zip(inputs_index,labels_index))
print(len(label_unions))
trains = []
devs  = []
tests = []
for c in range(num_class):
  type_sample = [union for union in label_unions if np.argmax(union[1]) == c]
  print('the length of this type length',len(type_sample),c)
  shuffle(type_sample)
  num_all = len(type_sample)
  num_train = int(num_all*0.8)
  num_dev = int(num_all*0.9)
  trains.extend(type_sample[0:num_train])
  devs.extend(type_sample[num_train:num_dev])
  tests.extend(type_sample[num_dev:num_all])
shuffle(trains)
shuffle(devs)
shuffle(tests)
print('the length of trains is:{0}'.format(len(trains)))
print('the length of devs is:{0}'.format(len(devs)))
print('the length of tests is:{0}'.format(len(tests)))

#--------------------------------------------------------------------
#------------------------ model processing --------------------------
#--------------------------------------------------------------------
from ClassifierRNN import NN_config,CALC_config,ClassifierRNN

# parameters used by rnns
num_layers = 1
num_units = 60
num_seqs = 1000
step_length = 10
num_steps = int(num_seqs/step_length)
embedding_size = 300
num_classes = 8
n_words = len(words_voca)

# parameters used by trainning models
batch_size = 64
num_epoch = 100
learning_rate = 0.0075
show_every_epoch = 10

nn_config = NN_config(num_seqs =num_seqs,\
           num_steps = num_steps,\
           num_units = num_units,\
          num_classes = num_classes,\
           num_layers = num_layers,\
           vocab_size = n_words,\
           embedding_size = embedding_size,\
           use_embeddings = False,\
           embedding_init = embeddings)
calc_config = CALC_config(batch_size = batch_size,\
             num_epoches = num_epoch,\
             learning_rate = learning_rate,\
             show_every_steps = 10,\
             save_every_steps = 100)

print("this is checking of nn_config:\\\n",
   "out of num_seqs:{}\n".format(nn_config.num_seqs),
   "out of num_steps:{}\n".format(nn_config.num_steps),
   "out of num_units:{}\n".format(nn_config.num_units),
  "out of num_classes:{}\n".format(nn_config.num_classes),
   "out of num_layers:{}\n".format(nn_config.num_layers),
   "out of vocab_size:{}\n".format(nn_config.vocab_size),
   "out of embedding_size:{}\n".format(nn_config.embedding_size),
   "out of use_embeddings:{}\n".format(nn_config.use_embeddings))
print("this is checing of calc_config: \\\n",
   "out of batch_size {} \n".format(calc_config.batch_size),
   "out of num_epoches {} \n".format(calc_config.num_epoches),
   "out of learning_rate {} \n".format(calc_config.learning_rate),
  "out of keep_prob {} \n".format(calc_config.keep_prob),
   "out of show_every_steps {} \n".format(calc_config.show_every_steps),
   "out of save_every_steps {} \n".format(calc_config.save_every_steps))

rnn_model = ClassifierRNN(nn_config,calc_config)
rnn_model.fit(trains,restart=False)
accuracy = rnn_model.predict_accuracy(devs,test=False)
print("Final accuracy of devs is {}".format(accuracy))
test_accuracy = rnn_model.predict_accuracy(tests,test=False)
print("The final accuracy of tests is :{}".format(test_accuracy))  

4、模型评估, 因为在本次算例中模型数据较少,总共有2000多个样本,相对较少,因此难免出现过拟合的状态,rnn在训练trains样本时其准确率为接近1.0 但在进行devs和tests集合验证的时候,发现准确率为6.0左右,可适当的增加l2 但不在本算例考虑范围内,将本模型用于IMDB算例计算的时候,相抵25000个样本的时候的准确率为89.0%左右。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python带动态参数功能的sqlite工具类

    本文实例讲述了Python带动态参数功能的sqlite工具类.分享给大家供大家参考,具体如下: 最近在弄sqlite和python 在网上参考各教程后,结合以往java jdbc数据库工具类写出以下python连接sqlite的工具类 写得比较繁琐 主要是想保留一种类似java的Object-args动态参数写法 并兼容数组/list方式传递不定个数参数 并且返回值是List形式 dict字典 以便和JSON格式互相转换 在python中有一些区别 经过该工具类封装之后可以有以下用法: db.e

  • python 基本数据类型占用内存空间大小的实例

    python中基本数据类型和其他的语言占用的内存空间大小有很大差别 import sys a = 100 b = True c = 100L d = 1.1 e ="" f = [] g =() h = {} i = set([]) print " %s size is %d "%(type(a),sys.getsizeof(a)) print " %s size is %d "%(type(b),sys.getsizeof(b)) print

  • Python面向对象类继承和组合实例分析

    本文实例讲述了Python面向对象类继承和组合.分享给大家供大家参考,具体如下: 在python3中所有类默认继承object,凡是继承了object的类都成为新式类,以及该子类的子类Python3中所有的类都是新式类,没有集成object类的子类成为经典类(在Python2中没有集成object的类以及它的子类都是经典类 继承式用来创建新的类的一种方式,好处是减少重复代码 class People: def __init__(self,name,age): self.name=name sel

  • Python 类的特殊成员解析

    类的成员有两种形式 公有成员,在任何地方都能访问 私有成员,只有在类的内部才能方法,私有成员命名时,前两个字符是下划线. class Foo: def __init__(self, name, age): self.name = name self.__age = age def show(self): # 间接方法私有字段 return self.__age obj = Foo('klvchen', 25) print(obj.name) res = obj.show() print(res)

  • Python把csv数据写入list和字典类型的变量脚本方法

    如下所示: #coding=utf8 import csv import logging logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s', datefmt='%a, %d %b %Y %H:%M:%S', filename='readDate.log', filemode='w') ''' 该模块的主要功能,是

  • 深入浅析Python的类

    面向对象编程时,都会遇到一个概念,类,python也有这个概念,下面我们通过代码来深入了解下. 创建和使用类 class Dog(): def __init__(self, name, age): self.name = name self.age = age def sit(self): print(self.name.title() + " is now sitting.") def roll_over(self): print(self.name.title() + "

  • Python操作Oracle数据库的简单方法和封装类实例

    本文实例讲述了Python操作Oracle数据库的简单方法和封装类.分享给大家供大家参考,具体如下: 最近工作有接触到Oracle,发现很多地方用Python脚本去做的话,应该会方便很多,所以就想先学习下Python操作Oracle的基本方法. 考虑到Oracle的使用还有一个OracleClient的NetConfig的存在,我觉得连接起来就应该不是个简单的事情. 果然,网上找了几个连接方法,然后依葫芦却画了半天,却也不得一个瓢. 方法1:用户名,密码和监听分别作为参数 conn=cx_Ora

  • Python3实现的Mysql数据库操作封装类

    本文实例讲述了Python3实现的Mysql数据库操作封装类.分享给大家供大家参考,具体如下: #encoding:utf-8 #name:mod_db.py ''''' 使用方法:1.在主程序中先实例化DB Mysql数据库操作类. 2.使用方法:db=database() db.fetch_all("sql") ''' import MySQLdb import MySQLdb.cursors import mod_config import mod_logger DB = &qu

  • 解决python写入mysql中datetime类型遇到的问题

    刚开始使用python,还不太熟练,遇到一个datetime数据类型的问题: 在mysql数据库中,有一个datetime类型的字段用于存储记录的日期时间值.python程序中有对应的一个datetime变量dt. 现在需要往mysql数据库中添加记录,每次添加时,将datetime型变量dt写入mysql数据库tablename表中exTime字段里. 问题,如何写入?调试时,总是无法写入. 运行环境:windows10 python 3.6 mysql5.6.38 运行结果提示: Proce

  • Python DataFrame设置/更改列表字段/元素类型的方法

    Python DataFrame 如何设置列表字段/元素类型? 比如笔者想将列表的两个字段由float64设置为int64,那么就要用到DataFrame的astype属性,举例如图: 该例列表为"m_pred_survived"字段为"PassengerId"及"Survived",设置为int64类型,最后可以输出检验下是否正确. m_pred_survived = pd.DataFrame(columns=['PassengerId', '

  • Python基于property实现类的特性操作示例

    本文实例讲述了Python基于property实现类的特性操作.分享给大家供大家参考,具体如下: Python中的特性是一个函数,但是在使用的形式上看起来更像是一个属性.针对一个对象来说,与属性相比,特性是不能够随意添加的.而对象的属性,默认情况下添加是十分简单的. 下面通过代码展示如何使用property实现特性: # -*- coding:utf-8 -*- #!python3 class MyClass: def __init__(self,val1,val2): self.val1 =

随机推荐