C语言 位运算详解及示例代码

所谓位运算,就是对一个比特(Bit)位进行操作。在《二进制思想以及数据的存储》一节中讲到,比特(Bit)是一个电子元器件,8个比特构成一个字节(Byte),它已经是粒度最小的可操作单元了。

C语言提供了六种位运算符:

运算符 & | ^ ~ << >>
说明 按位与 按位或 按位异或 取反 左移 右移

按位与运算(&)

一个比特(Bit)位只有 0 和 1 两个取值,只有参与&运算的两个位都为 1 时,结果才为 1,否则为 0。例如1&1为 1,0&0为 0,1&0也为 0,这和逻辑运算符&&非常类似。

C语言中不能直接使用二进制,&两边的操作数可以是十进制、八进制、十六进制,它们在内存中最终都是以二进制形式存储,&就是对这些内存中的二进制位进行运算。其他的位运算符也是相同的道理。

例如,9 & 5可以转换成如下的运算:

0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1001  (9 在内存中的存储)
& 0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0101  (5 在内存中的存储)
      -----------------------------------------------------------------------------------
    0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0001  (1 在内存中的存储)

也就是说,按位与运算会对参与运算的两个数的所有二进制位进行&运算,9 & 5的结果为 1。

又如,-9 & 5可以转换成如下的运算:

1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0111  (-9 在内存中的存储)
& 0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0101  (5 在内存中的存储)
             -----------------------------------------------------------------------------------
    0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0101  (5 在内存中的存储)

-9 & 5的结果是 5。

关于正数和负数在内存中的存储形式,我们已在VIP教程《整数在内存中是如何存储的》中进行了讲解。

再强调一遍,&是根据内存中的二进制位进行运算的,而不是数据的二进制形式;其他位运算符也一样。以-9&5为例,-9 的在内存中的存储和 -9 的二进制形式截然不同:

1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0111  (-9 在内存中的存储)
-0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1001  (-9 的二进制形式,前面多余的 0 可以抹掉)

按位与运算通常用来对某些位清 0,或者保留某些位。例如要把 n 的高 16 位清 0 ,保留低 16 位,可以进行n & 0XFFFF运算(0XFFFF 在内存中的存储形式为 0000 0000 -- 0000 0000 -- 1111 1111 -- 1111 1111)。

【实例】对上面的分析进行检验。

#include <stdio.h>
int main(){
  int n = 0X8FA6002D;
  printf("%d, %d, %X\n", 9 & 5, -9 & 5, n & 0XFFFF);
  return 0;
}

运行结果:

1, 5, 2D

按位或运算(|)

参与|运算的两个二进制位有一个为 1 时,结果就为 1,两个都为 0 时结果才为 0。例如1|1为1,0|0为0,1|0为1,这和逻辑运算中的||非常类似。

例如,9 | 5可以转换成如下的运算:

0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1001  (9 在内存中的存储)
|   0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0101  (5 在内存中的存储)
      -----------------------------------------------------------------------------------
    0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1101  (13 在内存中的存储)

9 | 5的结果为 13。

又如,-9 | 5可以转换成如下的运算:

1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0111  (-9 在内存中的存储)
|   0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0101  (5 在内存中的存储)
      -----------------------------------------------------------------------------------
    1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0111  (-9 在内存中的存储)

-9 | 5的结果是 -9。

按位或运算可以用来将某些位置 1,或者保留某些位。例如要把 n 的高 16 位置 1,保留低 16 位,可以进行n | 0XFFFF0000运算(0XFFFF0000 在内存中的存储形式为 1111 1111 -- 1111 1111 -- 0000 0000 -- 0000 0000)。

【实例】对上面的分析进行校验。

#include <stdio.h>
int main(){
  int n = 0X2D;
  printf("%d, %d, %X\n", 9 | 5, -9 | 5, n | 0XFFFF0000);
  return 0;
}

运行结果:

13, -9, FFFF002D
按位异或运算(^)

参与^运算两个二进制位不同时,结果为 1,相同时结果为 0。例如0^1为1,0^0为0,1^1为0。

例如,9 | 5可以转换成如下的运算:

0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1001  (9 在内存中的存储)
^  0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0101  (5 在内存中的存储)
   -----------------------------------------------------------------------------------
    0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1100  (12 在内存中的存储)

9 | 5的结果为 12。

又如,-9 | 5可以转换成如下的运算:

1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0111  (-9 在内存中的存储)
^  0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0101  (5 在内存中的存储)
           -----------------------------------------------------------------------------------
    1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0010  (-1 在内存中的存储)

-9 | 5的结果是 -14。

按位异或运算可以用来将某些二进制位反转。例如要把 n 的高 16 位反转,保留低 16 位,可以进行n ^ 0XFFFF0000运算(0XFFFF0000 在内存中的存储形式为 1111 1111 -- 1111 1111 -- 0000 0000 -- 0000 0000)。

【实例】对上面的分析进行校验。

#include <stdio.h>
int main(){
  unsigned n = 0X0A07002D;
  printf("%d, %d, %X\n", 9 ^ 5, -9 ^ 5, n ^ 0XFFFF0000);
  return 0;
}

运行结果:

12, -14, F5F8002D

取反运算(~)

取反运算符~为单目运算符,右结合性,作用是对参与运算的二进制位取反。例如~1为0,~0为1,这和逻辑运算中的!非常类似。。

例如,~9可以转换为如下的运算:

~ 0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1001  (9 在内存中的存储)
-----------------------------------------------------------------------------------
   1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0110  (-10 在内存中的存储)

所以~9的结果为 -10。

例如,~-9可以转换为如下的运算:

~ 1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0111  (-9 在内存中的存储)
-----------------------------------------------------------------------------------
   0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1000  (9 在内存中的存储)

所以~-9的结果为 8。

【实例】对上面的分析进行校验。

#include <stdio.h>
int main(){
  printf("%d, %d\n", ~9, ~-9 );
  return 0;
}

运行结果:

-10, 8

左移运算(<<)

左移运算符<<用来把操作数的各个二进制位全部左移若干位,高位丢弃,低位补0。

例如,9<<3可以转换为如下的运算:

<< 0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1001  (9 在内存中的存储)
          -----------------------------------------------------------------------------------
     0000 0000 -- 0000 0000 -- 0000 0000 -- 0100 1000  (72 在内存中的存储)

所以9<<3的结果为 72。

又如,(-9)<<3可以转换为如下的运算:

<< 1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0111  (-9 在内存中的存储)
-----------------------------------------------------------------------------------
      1111 1111 -- 1111 1111 -- 1111 1111 -- 1011 1000  (-72 在内存中的存储)

所以(-9)<<3的结果为 -72

如果数据较小,被丢弃的高位不包含 1,那么左移 n 位相当于乘以 2 的 n 次方。

【实例】对上面的结果进行校验。

#include <stdio.h>

int main(){
  printf("%d, %d\n", 9<<3, (-9)<<3 );
  return 0;
}

运行结果:

72, -72

右移运算(>>)

右移运算符>>用来把操作数的各个二进制位全部右移若干位,低位丢弃,高位补 0 或 1。如果数据的最高位是 0,那么就补 0;如果最高位是 1,那么就补 1。

例如,9>>3可以转换为如下的运算:

>> 0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1001  (9 在内存中的存储)
    -----------------------------------------------------------------------------------
     0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0001  (1 在内存中的存储)

所以9>>3的结果为 1。

又如,(-9)>>3可以转换为如下的运算:

>> 1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0111  (-9 在内存中的存储)
          -----------------------------------------------------------------------------------
      1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 1110  (-2 在内存中的存储)

所以(-9)>>3的结果为 -2

如果被丢弃的低位不包含 1,那么右移 n 位相当于除以 2 的 n 次方(但被移除的位中经常会包含 1)。

【实例】对上面的结果进行校验。

#include <stdio.h>
int main(){
  printf("%d, %d\n", 9>>3, (-9)>>3 );
  return 0;
}

运行结果:

1, -2

以上就是对 C语言位运算的知识整理,后续继续补充相关资料,谢谢大家对本站的支持!

(0)

相关推荐

  • C语言 以字符串的形式读写文件详解及示例代码

    fgetc() 和 fputc() 函数每次只能读写一个字符,速度较慢:实际开发中往往是每次读写一个字符串或者一个数据块,这样能明显提高效率. 读字符串函数fgets fgets() 函数用来从指定的文件中读取一个字符串,并保存到字符数组中,它的原型为: char *fgets ( char *str, int n, FILE *fp ); str 为字符数组,n 为要读取的字符数目,fp 为文件指针. 返回值:读取成功时返回字符数组首地址,也即 str:读取失败时返回 NULL:如果开始读取时

  • C语言 以字符形式读写文件详解及示例代码

    在C语言中,读写文件比较灵活,既可以每次读写一个字符,也可以读写一个字符串,甚至是任意字节的数据(数据块).本节介绍以字符形式读写文件. 以字符形式读写文件时,每次可以从文件中读取一个字符,或者向文件中写入一个字符.主要使用两个函数:fgetc()和fputc(). 字符读取函数 fgetc fgetc 是 file get char 的缩写,意思是从指定的文件中读取一个字符.它的原型为: int fgetc (FILE *fp); fp 为文件指针.fgetc() 读取成功时返回读取到的字符,

  • C语言 文件的打开与关闭详解及示例代码

    在C语言中,文件操作都是由库函数来完成的,这节介绍文件的打开和关闭. 文件的打开(fopen函数) fopen() 函数用来打开一个文件,它的原型为: FILE *fopen(char *filename, char *mode); filename为文件名(包括文件路径),mode为打开方式,它们都是字符串.fopen() 会获取文件信息,包括文件名.文件状态.当前读写位置等,并将这些信息保存到一个FILE类型的结构体变量中,然后将该变量的地址返回. FILE是在stdio.h头文件中定义的一

  • C语言 typedef:给类型起一个别名

    C语言允许为一个数据类型起一个新的别名,就像给人起"绰号"一样. 起别名的目的不是为了提高程序运行效率,而是为了编码方便.例如有一个结构体的名字是 stu,要想定义一个结构体变量就得这样写: struct stu stu1; struct 看起来就是多余的,但不写又会报错.如果为 struct stu 起了一个别名 STU,书写起来就简单了: STU stu1; 这种写法更加简练,意义也非常明确,不管是在标准头文件中还是以后的编程实践中,都会大量使用这种别名. 使用关键字 typede

  • C语言 共用体(Union)详解及示例代码

    通过前面的讲解,我们知道结构体(Struct)是一种构造类型或复杂类型,它可以包含多个类型不同的成员.在C语言中,还有另外一种和结构体非常类似的语法,叫做共用体(Union),它的定义格式为: union 共用体名{     成员列表 }; 共用体有时也被称为联合或者联合体,这也是 Union 这个单词的本意. 结构体和共用体的区别在于:结构体的各个成员会占用不同的内存,互相之间没有影响:而共用体的所有成员占用同一段内存,修改一个成员会影响其余所有成员. 结构体占用的内存大于等于所有成员占用的内

  • C语言 指针与二维数组详解

    二维数组在概念上是二维的,有行和列,但在内存中所有的数组元素都是连续排列的,它们之间没有"缝隙".以下面的二维数组 a 为例: int a[3][4] = { {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11} }; 从概念上理解,a 的分布像一个矩阵: 0   1   2   3 4   5   6   7 8   9  10  11 但在内存中,a 的分布是一维线性的,整个数组占用一块连续的内存: C语言中的二维数组是按行排列的,也就是先存放 a[

  • C语言 结构体和指针详解及简单示例

    指针也可以指向一个结构体,定义的形式一般为: struct 结构体名 *变量名; 下面是一个定义结构体指针的实例: struct stu{ char *name; //姓名 int num; //学号 int age; //年龄 char group; //所在小组 float score; //成绩 } stu1 = { "Tom", 12, 18, 'A', 136.5 }; //结构体指针struct stu *pstu = &stu1; 也可以在定义结构体的同时定义结构

  • C语言 指针数组详解及示例代码

    如果一个数组中的所有元素保存的都是指针,那么我们就称它为指针数组.指针数组的定义形式一般为: dataType *arrayName[length]; [ ]的优先级高于*,该定义形式应该理解为: dataType *(arrayName[length]); 括号里面说明arrayName是一个数组,包含了length个元素,括号外面说明每个元素的类型为dataType *. 除了每个元素的数据类型不同,指针数组和普通数组在其他方面都是一样的,下面是一个简单的例子: #include <stdi

  • C语言 二级指针详解及示例代码

    指针可以指向一份普通类型的数据,例如 int.double.char 等,也可以指向一份指针类型的数据,例如 int *.double *.char * 等. 如果一个指针指向的是另外一个指针,我们就称它为二级指针,或者指向指针的指针. 假设有一个 int 类型的变量 a,p1是指向 a 的指针变量,p2 又是指向 p1 的指针变量,它们的关系如下图所示: 将这种关系转换为C语言代码: int a =100; int *p1 = &a; int **p2 = &p1; 指针变量也是一种变量

  • C语言 位域详解及示例代码

    有些数据在存储时并不需要占用一个完整的字节,只需要占用一个或几个二进制位即可.例如开关只有通电和断电两种状态,用 0 和 1 表示足以,也就是用一个二进位.正是基于这种考虑,C语言又提供了一种叫做位域的数据结构. 在结构体定义时,我们可以指定某个成员变量所占用的二进制位数(Bit),这就是位域.请看下面的例子: struct bs{ unsigned m; unsigned n: 4; unsigned char ch: 6; } :后面的数字用来限定成员变量占用的位数.成员 m 没有限制,根据

  • C语言 用指针作为函数返回值详解

    C语言允许函数的返回值是一个指针(地址),我们将这样的函数称为指针函数.下面的例子定义了一个函数 strlong(),用来返回两个字符串中较长的一个: #include <stdio.h> #include <string.h> char *strlong(char *str1, char *str2){ if(strlen(str1) >= strlen(str2)){ return str1; }else{ return str2; } } int main(){ cha

  • C语言 以数据块的形式读写文件详解及实现代码

    fgets() 有局限性,每次最多只能从文件中读取一行内容,因为 fgets 遇到换行符就结束读取.如果希望读取多行内容,需要使用 fread 函数:相应地写入函数为 fwrite. fread() 函数用来从指定文件中读取块数据.所谓块数据,也就是若干个字节的数据,可以是一个字符,可以是一个字符串,可以是多行数据,并没有什么限制.fread() 的原型为: size_t fread ( void *ptr, size_t size, size_t count, FILE *fp ); fwri

随机推荐