tensorflow实现KNN识别MNIST
KNN算法算是最简单的机器学习算法之一了,这个算法最大的特点是没有训练过程,是一种懒惰学习,这种结构也可以在tensorflow实现。
KNN的最核心就是距离度量方式,官方例程给出的是L1范数的例子,我这里改成了L2范数,也就是我们常说的欧几里得距离度量,另外,虽然是叫KNN,意思是选取k个最接近的元素来投票产生分类,但是这里只是用了最近的那个数据的标签作为预测值了。
__author__ = 'freedom' import tensorflow as tf import numpy as np def loadMNIST(): from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data',one_hot=True) return mnist def KNN(mnist): train_x,train_y = mnist.train.next_batch(5000) test_x,test_y = mnist.train.next_batch(200) xtr = tf.placeholder(tf.float32,[None,784]) xte = tf.placeholder(tf.float32,[784]) distance = tf.sqrt(tf.reduce_sum(tf.pow(tf.add(xtr,tf.neg(xte)),2),reduction_indices=1)) pred = tf.argmin(distance,0) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) right = 0 for i in range(200): ansIndex = sess.run(pred,{xtr:train_x,xte:test_x[i,:]}) print 'prediction is ',np.argmax(train_y[ansIndex]) print 'true value is ',np.argmax(test_y[i]) if np.argmax(test_y[i]) == np.argmax(train_y[ansIndex]): right += 1.0 accracy = right/200.0 print accracy if __name__ == "__main__": mnist = loadMNIST() KNN(mnist)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。
您可能感兴趣的文章:
- tensorflow实现softma识别MNIST
- kNN算法python实现和简单数字识别的方法
- Python语言描述KNN算法与Kd树
- python机器学习实战之最近邻kNN分类器
- python实现kNN算法
- Python KNN分类算法学习
- 使用python实现knn算法
相关推荐
-
kNN算法python实现和简单数字识别的方法
本文实例讲述了kNN算法python实现和简单数字识别的方法.分享给大家供大家参考.具体如下: kNN算法算法优缺点: 优点:精度高.对异常值不敏感.无输入数据假定 缺点:时间复杂度和空间复杂度都很高 适用数据范围:数值型和标称型 算法的思路: KNN算法(全称K最近邻算法),算法的思想很简单,简单的说就是物以类聚,也就是说我们从一堆已知的训练集中找出k个与目标最靠近的,然后看他们中最多的分类是哪个,就以这个为依据分类. 函数解析: 库函数: tile() 如tile(A,n)就是将A重复n次
-
python实现kNN算法
kNN(k-nearest neighbor)是一种基本的分类与回归的算法.这里我们先只讨论分类中的kNN算法. k邻近算法的输入为实例的特征向量,对对应于特征空间中的点:输出为实例的类别,可以取多类,k近邻法是建设给定一个训练数据集,其中的实例类别已定,分类时,对于新的实例,根据其k个最邻近的训练实例的类别,通过多数表决等方式进行预测.所以可以说,k近邻法不具有显示的学习过程.k临近算法实际上是利用训练数据集对特征向量空间进行划分,并作为其分类的"模型" k值的选择,距离的度量和分类
-
Python KNN分类算法学习
本文实例为大家分享了Python KNN分类算法的具体代码,供大家参考,具体内容如下 1.KNN分类算法 KNN分类算法(K-Nearest-Neighbors Classification),又叫K近邻算法,是一个概念极其简单,而分类效果又很优秀的分类算法. 他的核心思想就是,要确定测试样本属于哪一类,就寻找所有训练样本中与该测试样本"距离"最近的前K个样本,然后看这K个样本大部分属于哪一类,那么就认为这个测试样本也属于哪一类.简单的说就是让最相似的K个样本来投票决定. 这里所说的距
-
使用python实现knn算法
本文实例为大家分享了python实现knn算法的具体代码,供大家参考,具体内容如下 knn算法描述 对需要分类的点依次执行以下操作: 1.计算已知类别数据集中每个点与该点之间的距离 2.按照距离递增顺序排序 3.选取与该点距离最近的k个点 4.确定前k个点所在类别出现的频率 5.返回前k个点出现频率最高的类别作为该点的预测分类 knn算法实现 数据处理 #从文件中读取数据,返回的数据和分类均为二维数组 def loadDataSet(filename): dataSet = [] labels
-
Python语言描述KNN算法与Kd树
最近邻法和k-近邻法 下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类? 提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类.由此,我们引出最近邻算法的定义:为了判定未知样本的类别,以全部训练样本作为代表点,计算未知样本与所有训练样本的距离,并以最近邻者的类别作为决策未知样本类别的唯一依据.但是,最近邻算法明显是存在缺陷的,比如下面的例子:有一个未知形状(图中绿色的圆点),如何判断它是什么形状? 显然,最近邻算法的缺陷--对噪声数据过于敏感,为了解决这个问题,我们可
-
python机器学习实战之最近邻kNN分类器
K近邻法是有监督学习方法,原理很简单,假设我们有一堆分好类的样本数据,分好类表示每个样本都一个对应的已知类标签,当来一个测试样本要我们判断它的类别是, 就分别计算到每个样本的距离,然后选取离测试样本最近的前K个样本的标签累计投票, 得票数最多的那个标签就为测试样本的标签. 源代码详解: #-*- coding:utf-8 -*- #!/usr/bin/python # 测试代码 约会数据分类 import KNN KNN.datingClassTest1() 标签为字符串 KNN.datingC
-
tensorflow实现softma识别MNIST
识别MNIST已经成了深度学习的hello world,所以每次例程基本都会用到这个数据集,这个数据集在tensorflow内部用着很好的封装,因此可以方便地使用. 这次我们用tensorflow搭建一个softmax多分类器,和之前搭建线性回归差不多,第一步是通过确定变量建立图模型,然后确定误差函数,最后调用优化器优化. 误差函数与线性回归不同,这里因为是多分类问题,所以使用了交叉熵. 另外,有一点值得注意的是,这里构建模型时我试图想拆分多个函数,但是后来发现这样做难度很大,因为图是在规定变量
-
tensorflow实现KNN识别MNIST
KNN算法算是最简单的机器学习算法之一了,这个算法最大的特点是没有训练过程,是一种懒惰学习,这种结构也可以在tensorflow实现. KNN的最核心就是距离度量方式,官方例程给出的是L1范数的例子,我这里改成了L2范数,也就是我们常说的欧几里得距离度量,另外,虽然是叫KNN,意思是选取k个最接近的元素来投票产生分类,但是这里只是用了最近的那个数据的标签作为预测值了. __author__ = 'freedom' import tensorflow as tf import numpy as n
-
基于TensorFlow的CNN实现Mnist手写数字识别
本文实例为大家分享了基于TensorFlow的CNN实现Mnist手写数字识别的具体代码,供大家参考,具体内容如下 一.CNN模型结构 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层池化:池化视野2*2,步长为2 第二层卷积:感受视野5*5,步长为1,卷积核:64个 第二层池化:池化视野2*2,步长为2 全连接层:设置1024个神经元 输出层:0~9十个数字类别 二.代码实现 import tensorflow as tf #Tensorfl
-
tensorflow基于CNN实战mnist手写识别(小白必看)
很荣幸您能看到这篇文章,相信通过标题打开这篇文章的都是对tensorflow感兴趣的,特别是对卷积神经网络在mnist手写识别这个实例感兴趣.不管你是什么基础,我相信,你在看完这篇文章后,都能够完全理解这个实例.这对于神经网络入门的小白来说,简直是再好不过了. 通过这篇文章,你能够学习到 tensorflow一些方法的用法 mnist数据集的使用方法以及下载 CNN卷积神经网络具体python代码实现 CNN卷积神经网络原理 模型训练.模型的保存和载入 Tensorflow实战mnist手写数字
-
详解如何用TensorFlow训练和识别/分类自定义图片
很多正在入门或刚入门TensorFlow机器学习的同学希望能够通过自己指定图片源对模型进行训练,然后识别和分类自己指定的图片.但是,在TensorFlow官方入门教程中,并无明确给出如何把自定义数据输入训练模型的方法.现在,我们就参考官方入门课程<Deep MNIST for Experts>一节的内容(传送门:https://www.tensorflow.org/get_started/mnist/pros),介绍如何将自定义图片输入到TensorFlow的训练模型. 在<Deep M
-
使用TensorFlow直接获取处理MNIST数据方式
MNIST是一个非常有名的手写体数字识别数据集,TensorFlow对MNIST数据集做了封装,可以直接调用.MNIST数据集包含了60000张图片作为训练数据,10000张图片作为测试数据,每一张图片都代表了0-9中的一个数字,图片大小都是28*28.虽然这个数据集只提供了训练和测试数据,但是为了验证训练网络的效果,一般从训练数据中划分出一部分数据作为验证数据,测试神经网络模型在不同参数下的效果.TensorFlow提供了一个类来处理MNIST数据. 代码如下: from tensorflow
-
python使用tensorflow深度学习识别验证码
本文介绍了python使用tensorflow深度学习识别验证码 ,分享给大家,具体如下: 除了传统的PIL包处理图片,然后用pytessert+OCR识别意外,还可以使用tessorflow训练来识别验证码. 此篇代码大部分是转载的,只改了很少地方. 代码是运行在linux环境,tessorflow没有支持windows的python 2.7. gen_captcha.py代码. #coding=utf-8 from captcha.image import ImageCaptcha # pi
-
tensorflow使用CNN分析mnist手写体数字数据集
本文实例为大家分享了tensorflow使用CNN分析mnist手写体数字数据集,供大家参考,具体内容如下 import tensorflow as tf import numpy as np import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_da
-
caffe的python接口之手写数字识别mnist实例
目录 引言 一.数据准备 二.导入caffe库,并设定文件路径 二.生成配置文件 三.生成参数文件solver 四.开始训练模型 五.完成的python文件 引言 深度学习的第一个实例一般都是mnist,只要这个例子完全弄懂了,其它的就是举一反三的事了.由于篇幅原因,本文不具体介绍配置文件里面每个参数的具体函义,如果想弄明白的,请参看我以前的博文: 数据层及参数 视觉层及参数 solver配置文件及参数 一.数据准备 官网提供的mnist数据并不是图片,但我们以后做的实际项目可能是图片.因此有些
-
python tensorflow学习之识别单张图片的实现的示例
假设我们已经安装好了tensorflow. 一般在安装好tensorflow后,都会跑它的demo,而最常见的demo就是手写数字识别的demo,也就是mnist数据集. 然而我们仅仅是跑了它的demo而已,可能很多人会有和我一样的想法,如果拿来一张数字图片,如何应用我们训练的网络模型来识别出来,下面我们就以mnist的demo来实现它. 1.训练模型 首先我们要训练好模型,并且把模型model.ckpt保存到指定文件夹 saver = tf.train.Saver() saver.save(s
随机推荐
- C# 正则表达式经典分类整理集合手册第1/3页
- Android 双击Back键退出应用的实现方法
- jscript与vbscript 操作XML元素属性的代码
- ajax无刷新分页的简单实现
- ajax php实现给fckeditor文本编辑器增加图片删除功能
- jQuery 源码分析笔记(5) jQuery.support
- jQuery选取所有复选框被选中的值并用Ajax异步提交数据的实例
- 关于flash遮盖div浮动层的解决方法
- JS设计模式之单例模式(一)
- asp 图片正则 替换,替换前检查图片是不是本地地址的方法
- Linux下通过脚本自动备份Oracle数据库并删除指定天数前的备份
- asp.net中控制反转的理解(文字+代码)
- 百度工程师讲PHP函数的实现原理及性能分析(三)
- PagerSlidingTabStrip制作Android带标签的多界面滑动切换
- node.js连接MongoDB数据库的2种方法教程
- JS 实现倒计时数字时钟效果【附实例代码】
- 利用JQuery动画制作滑动菜单项效果实现步骤及代码
- jQuery 取值、赋值的基本方法整理
- 强烈推荐:php.ini中文版(1)
- PHP基础知识回顾