javascript与Python快速排序实例对比
本文实例对比了javascript与Python快速排序实现方法。分享给大家供大家参考。具体如下:
js实现方法:
function quicksort(arr) { if (arr.length <= 1) return arr return quicksort(arr.filter(function (lt, i) {return i > 0 && lt < arr[0]})) .concat([arr[0]]) .concat(quicksort(arr.filter(function(ge, i) {return i > 0 && ge >= arr[0]}))) }
python实现方法:
def quicksort(arr): if len(arr) <= 1: return arr return quicksort([lt for lt in arr[1:] if lt < arr[0]]) + a[0:1] + \ quicksort([ge for ge in arr[1:] if ge >= arr[0]])
希望本文所述对大家的javascript及Python程序设计有所帮助。
相关推荐
-
python 快速排序代码
复制代码 代码如下: def quick_sort(ls): return [] if ls == [] else quick_sort([y for y in ls[1:] if y < ls[0]]) + [ls[0]] + quick_sort([y for y in ls[1:] if y >= ls[0]]) if __name__ == '__main__': l1 = [3,56,8,1,34,56,89,234,56,231,45,90,33,66,88,11,22] l2 =
-
Python实现的快速排序算法详解
本文实例讲述了Python实现的快速排序算法.分享给大家供大家参考,具体如下: 快速排序基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列. 如序列[6,8,1,4,3,9],选择6作为基准数.从右向左扫描,寻找比基准数小的数字为3,交换6和3的位置,[3,8,1,4,6,9],接着从左向右扫描,寻找比基准数大的数字为8,交换6和8的位置
-
python 实现插入排序算法
复制代码 代码如下: #!/usr/bin/python def insert_sort(array): for i in range(1, len(array)): key = array[i] j = i - 1 while j >= 0 and key < array[j]: array[j + 1] = array[j] j-=1 array[j + 1] = key if __name__ == "__main__": array = [2, 4, 32, 64,
-
Python实现快速排序和插入排序算法及自定义排序的示例
一.快速排序 快速排序(Quicksort)是对冒泡排序的一种改进.由C. A. R. Hoare在1962年提出.它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列. 快速排序,递归实现 def quick_sort(num_list): """ 快速排序 """ if num_li
-
python 算法 排序实现快速排序
QUICKSORT(A, p, r)是快速排序的子程序,调用划分程序对数组进行划分,然后递归地调用QUICKSORT(A, p, r),以完成快速排序的过程.快速排序的最差时间复杂度为O(n2),平时时间复杂度为O(nlgn).最差时间复杂度的情况为数组基本有序的时候,平均时间复杂度为数组的数值分布较为平均的时候.在平时情况下快速排序跟堆排序的时间复杂度都为O(nlgn),但是快速排序的常数项较小,所以要优于堆排序. PARTITION(A, p, r) 复制代码 代码如下: x ← A[r]
-
python冒泡排序算法的实现代码
1.算法描述:(1)共循环 n-1 次(2)每次循环中,如果 前面的数大于后面的数,就交换(3)设置一个标签,如果上次没有交换,就说明这个是已经好了的. 2.python冒泡排序代码 复制代码 代码如下: #!/usr/bin/python# -*- coding: utf-8 -*- def bubble(l): flag = True for i in range(len(l)-1, 0, -1): if flag: flag = False
-
Python实现的数据结构与算法之快速排序详解
本文实例讲述了Python实现的数据结构与算法之快速排序.分享给大家供大家参考.具体分析如下: 一.概述 快速排序(quick sort)是一种分治排序算法.该算法首先 选取 一个划分元素(partition element,有时又称为pivot):接着重排列表将其 划分 为三个部分:left(小于划分元素pivot的部分).划分元素pivot.right(大于划分元素pivot的部分),此时,划分元素pivot已经在列表的最终位置上:然后分别对left和right两个部分进行 递归排序. 其中
-
快速排序的算法思想及Python版快速排序的实现示例
快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序.它采用了一种分治的策略,通常称其为分治法(Divide-and-ConquerMethod). 1.分治法的基本思想 分治法的基本思想是:将原问题分解为若干个规模更小但结构与原问题相似的子问题.递归地解这些子问题,然后将这些子问题的解组合为原问题的解. 2.快速排序的基本思想 设当前待排序的无序区为R[low..high],利用分治法可将快速排序的基本思想描述为: (1)分解: 在R[low..high]中任选一个记录作为基准(
-
python快速排序代码实例
一. 算法描述: 1.先从数列中取出一个数作为基准数.2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边.3.再对左右区间重复第二步,直到各区间只有一个数. 二.python快速排序代码 复制代码 代码如下: #!/usr/bin/python# -*- coding: utf-8 -*- def sub_sort(array,low,high): key = array[low] while low < high: while low <
-
python 实现归并排序算法
理论不多说: 复制代码 代码如下: #!/usr/bin/python import sys def merge(array, q, p, r): left_array = array[q:p+1] right_array = array[p+1:r+1] left_array_num = len(left_array) right_array_num = len(right_array) i, j , k= [0, 0, q] while i < left_array_num and j <
-
python实现的各种排序算法代码
复制代码 代码如下: # -*- coding: utf-8 -*-# 测试各种排序算法# link:www.jb51.net# date:2013/2/2 #选择排序def select_sort(sort_array): for i, elem in enumerate(sort_array): for j, elem in enumerate(sort_array[i:]): if sort_array[i] > sort_array[j + i]
-
Python实现快速排序算法及去重的快速排序的简单示例
快速排序由于排序效率在同为O(N*logN)的几种排序方法中效率较高,因此经常被采用. 该方法的基本思想是: 1.先从数列中取出一个数作为基准数. 2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边. 3.再对左右区间重复第二步,直到各区间只有一个数. 现在通过一个实例来说明快排. 比如有一个数组: 6 2 4 5 3 第一步:选取一个基准数,不要被这个名词吓到了,你可以把它看作是一个比较大小的数,因为排序就是比较大小, 比如我选取最后一个数3为基准数,依次把数组的数和
随机推荐
- java线程的run()没有返回值怎么办?
- Python translator使用实例
- 仿iOS图标抖动
- 使用getBoundingClientRect方法实现简洁的sticky组件的方法
- PHP开启opcache提升代码性能
- android内存及内存溢出分析详解
- bootstrap table插件的分页与checkbox使用详解
- CSS网页布局入门教程4:二列固定宽度
- 一个简洁的全自动安装LNMP服务器环境的Shell脚本分享
- 对于Python异常处理慎用“except:pass”建议
- Android 使用selector改变按钮状态实例详解
- C语言学生管理系统源码分享
- Spring Aop之AspectJ注解配置实现日志管理的方法
- Centos7上Mesos和Marathon的安装和配置
- JavaScript事件冒泡与事件捕获实例分析
- MySQL联表查询的简单示例
- 详解Python3 pandas.merge用法
- laravel 如何实现引入自己的函数或类库
- Java中父类怎么调用子类的方法
- python opencv 读取本地视频文件 修改ffmpeg的方法