python多线程+代理池爬取天天基金网、股票数据过程解析

简介

提到爬虫,大部分人都会想到使用Scrapy工具,但是仅仅停留在会使用的阶段。为了增加对爬虫机制的理解,我们可以手动实现多线程的爬虫过程,同时,引入IP代理池进行基本的反爬操作。

本次使用天天基金网进行爬虫,该网站具有反爬机制,同时数量足够大,多线程效果较为明显。

技术路线

  • IP代理池
  • 多线程
  • 爬虫与反爬

编写思路

首先,开始分析天天基金网的一些数据。经过抓包分析,可知:
./fundcode_search.js包含所有基金的数据,同时,该地址具有反爬机制,多次访问将会失败的情况。

同时,经过分析可知某只基金的相关信息地址为:fundgz.1234567.com.cn/js/ + 基金代码 + .js

分析完天天基金网的数据后,搭建IP代理池,用于反爬作用。点击这里搭建代理池,由于该作者提供了一个例子,所以本代码里面直接使用的是作者提供的接口。如果你需要更快速的获取到普匿IP,则可以自行搭建一个本地IP代理池。

  # 返回一个可用代理,格式为ip:端口
  # 该接口直接调用github代理池项目给的例子,故不保证该接口实时可用
  # 建议自己搭建一个本地代理池,这样获取代理的速度更快
  # 代理池搭建github地址https://github.com/1again/ProxyPool
  # 搭建完毕后,把下方的proxy.1again.cc改成你的your_server_ip,本地搭建的话可以写成127.0.0.1或者localhost
  def get_proxy():
    data_json = requests.get("http://proxy.1again.cc:35050/api/v1/proxy/?type=2").text
    data = json.loads(data_json)
    return data['data']['proxy']

搭建完IP代理池后,我们开始着手多线程爬取数据的工作。一旦使用多线程,则需要考虑到数据的读写顺序问题。这里使用python中的队列queue进行存储基金代码,不同线程分别从这个queue中获取基金代码,并访问指定基金的数据。由于queue的读取和写入是阻塞的,所以可以确保该过程不会出现读取重复和读取丢失基金代码的情况。

  # 将所有基金代码放入先进先出FIFO队列中
  # 队列的写入和读取都是阻塞的,故在多线程情况下不会乱
  # 在不使用框架的前提下,引入多线程,提高爬取效率
  # 创建一个队列
  fund_code_queue = queue.Queue(len(fund_code_list))
  # 写入基金代码数据到队列
  for i in range(len(fund_code_list)):
    #fund_code_list[i]也是list类型,其中该list中的第0个元素存放基金代码
    fund_code_queue.put(fund_code_list[i][0])

现在,开始编写如何获取指定基金的代码。首先,该函数必须先判断queue是否为空,当不为空的时候才可进行获取基金数据。同时,当发现访问失败时,则必须将我们刚刚取出的基金代码重新放回到队列中去,这样才不会导致基金代码丢失。

  # 获取基金数据
  def get_fund_data():

    # 当队列不为空时
    while (not fund_code_queue.empty()):

      # 从队列读取一个基金代码
      # 读取是阻塞操作
      fund_code = fund_code_queue.get()

      # 获取一个代理,格式为ip:端口
      proxy = get_proxy()

      # 获取一个随机user_agent和Referer
      header = {'User-Agent': random.choice(user_agent_list),
           'Referer': random.choice(referer_list)
      }
      try:
        req = requests.get("http://fundgz.1234567.com.cn/js/" + str(fund_code) + ".js", proxies={"http": proxy}, timeout=3, headers=header)
      except Exception:
        # 访问失败了,所以要把我们刚才取出的数据再放回去队列中
        fund_code_queue.put(fund_code)
        print("访问失败,尝试使用其他代理访问")

当访问成功时,则说明能够成功获得基金的相关数据。当我们在将这些数据存入到一个.csv文件中,会发现数据出现错误。这是由于多线程导致,由于多个线程同时对该文件进行写入,导致出错。所以需要引入一个线程锁,确保每次只有一个线程写入。

  # 申请获取锁,此过程为阻塞等待状态,直到获取锁完毕
  mutex_lock.acquire()
  # 追加数据写入csv文件,若文件不存在则自动创建
  with open('./fund_data.csv', 'a+', encoding='utf-8') as csv_file:
    csv_writer = csv.writer(csv_file)
    data_list = [x for x in data_dict.values()]
    csv_writer.writerow(data_list)
  # 释放锁
  mutex_lock.release()

至此,大部分工作已经完成了。为了更好地实现伪装效果,我们对header进行随机选择。

  # user_agent列表
  user_agent_list = [
    'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.71 Safari/537.1 LBBROWSER',
    'Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E)',
    'Mozilla/5.0 (Windows NT 5.1) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.84 Safari/535.11 SE 2.X MetaSr 1.0',
    'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Maxthon/4.4.3.4000 Chrome/30.0.1599.101 Safari/537.36',
    'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.122 UBrowser/4.0.3214.0 Safari/537.36'
  ]
  # referer列表
  referer_list = [
    'http://fund.eastmoney.com/110022.html',
    'http://fund.eastmoney.com/110023.html',
    'http://fund.eastmoney.com/110024.html',
    'http://fund.eastmoney.com/110025.html'
  ]
  # 获取一个随机user_agent和Referer
  header = {'User-Agent': random.choice(user_agent_list),
       'Referer': random.choice(referer_list)
  }

最后,在main中,开启线程即可。

  # 创建一个线程锁,防止多线程写入文件时发生错乱
  mutex_lock = threading.Lock()
  # 线程数为50,在一定范围内,线程数越多,速度越快
  for i in range(50):
    t = threading.Thread(target=get_fund_data,name='LoopThread'+str(i))
    t.start()

通过对多线程和IP代理池的实践操作,能够更加深入了解多线程和爬虫的工作原理。当你在使用一些爬虫框架的时候,就能够做到快速定位错误并解决错误。

数据格式

000056,建信消费升级混合,2019-03-26,1.7740,1.7914,0.98,2019-03-27 15:00

000031,华夏复兴混合,2019-03-26,1.5650,1.5709,0.38,2019-03-27 15:00

000048,华夏双债增强债券C,2019-03-26,1.2230,1.2236,0.05,2019-03-27 15:00

000008,嘉实中证500ETF联接A,2019-03-26,1.4417,1.4552,0.93,2019-03-27 15:00

000024,大摩双利增强债券A,2019-03-26,1.1670,1.1674,0.04,2019-03-27 15:00

000054,鹏华双债增利债券,2019-03-26,1.1697,1.1693,-0.03,2019-03-27 15:00

000016,华夏纯债债券C,2019-03-26,1.1790,1.1793,0.03,2019-03-27 15:00

功能截图

配置说明

# 确保安装以下库,如果没有,请在python3环境下执行pip install 模块名
  import requests
  import random
  import re
  import queue
  import threading
  import csv
  import json

补充

完整版源代码存放在github上,有需要的可以下载

项目持续更新,欢迎您star本项目

,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值

(0)

相关推荐

  • 详解python多线程之间的同步(一)

    引言: 线程之间经常需要协同工作,通过某种技术,让一个线程访问某些数据时,其它线程不能访问这些数据,直到该线程完成对数据的操作.这些技术包括临界区(Critical Section),互斥量(Mutex),信号量(Semaphore),事件Event等. Event threading库中的event对象通过使用内部一个flag标记,通过flag的True或者False的变化来进行操作.      名称                                      含义 set( )

  • python 多线程串行和并行的实例

    如下所示: #coding=utf-8 import threading import time import cx_Oracle from pprint import pprint import csv table_name = "dbtest.csv" f = open(table_name + ".csv", "w") def exp01(): conn = cx_Oracle.connect('test/test@192.168.137.

  • python3 requests中使用ip代理池随机生成ip的实例

    啥也不说了,直接上代码吧! # encoding:utf-8 import requests # 导入requests模块用于访问测试自己的ip import random pro = ['1.119.129.2:8080', '115.174.66.148', '113.200.214.164'] # 在(http://www.xicidaili.com/wt/)上面收集的ip用于测试 # 没有使用字典的原因是 因为字典中的键是唯一的 http 和https 只能存在一个 所以不建议使用字典

  • Python多线程同步---文件读写控制方法

    1.实现文件读写的文件ltz_schedule_times.py #! /usr/bin/env python #coding=utf-8 import os def ReadTimes(): res = [] if os.path.exists('schedule_times.txt'): fp = open('schedule_times.txt', 'r') else: os.system('touch schedule_times.txt') fp = open('schedule_ti

  • python批量爬取下载抖音视频

    本文实例为大家分享了python批量爬取下载抖音视频的具体代码,供大家参考,具体内容如下 import os import requests import re import sys import asyncio import aiohttp headers = { 'user-agent': 'Mozilla/5.0 (iPhone; CPU iPhone OS 11_0 like Mac OS X) AppleWebKit/604.1.38 (KHTML, like Gecko) ' 'Ve

  • python爬虫爬取微博评论案例详解

    前几天,杨超越编程大赛火了,大家都在报名参加,而我也是其中的一员. 在我们的项目中,我负责的是数据爬取这块,我主要是把对于杨超越 的每一条评论的相关信息. 数据格式:{"name":评论人姓名,"comment_time":评论时间,"comment_info":评论内容,"comment_url":评论人的主页} 以上就是我们需要的信息. 爬虫前的分析: 以上是杨超越的微博主页,这是我们首先需要获取到的内容. 因为我们需要等

  • 对Python多线程读写文件加锁的实例详解

    Python的多线程在io方面比单线程还是有优势,但是在多线程开发时,少不了对文件的读写操作.在管理多个线程对同一文件的读写操作时,就少不了文件锁了. 使用fcntl 在linux下,python的标准库有现成的文件锁,来自于fcntl模块.这个模块提供了unix系统fcntl()和ioctl()的接口. 对于文件锁的操作,主要需要使用 fcntl.flock(fd, operation)这个函数. 其中,参数 fd 表示文件描述符:参数 operation 指定要进行的锁操作,该参数的取值有如

  • python多线程+代理池爬取天天基金网、股票数据过程解析

    简介 提到爬虫,大部分人都会想到使用Scrapy工具,但是仅仅停留在会使用的阶段.为了增加对爬虫机制的理解,我们可以手动实现多线程的爬虫过程,同时,引入IP代理池进行基本的反爬操作. 本次使用天天基金网进行爬虫,该网站具有反爬机制,同时数量足够大,多线程效果较为明显. 技术路线 IP代理池 多线程 爬虫与反爬 编写思路 首先,开始分析天天基金网的一些数据.经过抓包分析,可知: ./fundcode_search.js包含所有基金的数据,同时,该地址具有反爬机制,多次访问将会失败的情况. 同时,经

  • Python使用Beautiful Soup爬取豆瓣音乐排行榜过程解析

    前言 要想学好爬虫,必须把基础打扎实,之前发布了两篇文章,分别是使用XPATH和requests爬取网页,今天的文章是学习Beautiful Soup并通过一个例子来实现如何使用Beautiful Soup爬取网页. 什么是Beautiful Soup Beautiful Soup是一款高效的Python网页解析分析工具,可以用于解析HTL和XML文件并从中提取数据. Beautiful Soup输入文件的默认编码是Unicode,输出文件的编码是UTF-8. Beautiful Soup具有将

  • Python scrapy增量爬取实例及实现过程解析

    这篇文章主要介绍了Python scrapy增量爬取实例及实现过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 开始接触爬虫的时候还是初学Python的那会,用的还是request.bs4.pandas,再后面接触scrapy做个一两个爬虫,觉得还是框架好,可惜都没有记录都忘记了,现在做推荐系统需要爬取一定的文章,所以又把scrapy捡起来.趁着这次机会做一个记录. 目录如下: 环境 本地窗口调试命令 工程目录 xpath选择器 一个简单

  • Python爬虫实战之爬取京东商品数据并实实现数据可视化

    一.开发工具 Python版本:3.6.4 相关模块: DecryptLogin模块: argparse模块: 以及一些python自带的模块. 二.环境搭建 安装Python并添加到环境变量,pip安装需要的相关模块即可. 三.原理简介 原理其实挺简单的,首先,我们利用之前开源的DecryptLogin库来实现一下微博的模拟登录操作: '''模拟登录京东''' @staticmethod def login(): lg = login.Login() infos_return, session

  • python爬虫之Appium爬取手机App数据及模拟用户手势

    目录 Appium 模拟操作 屏幕滑动 屏幕点击 屏幕拖动 屏幕拖拽 文本输入 动作链 实战:爬取微博首页信息 Appium 在前文的讲解中,我们学会了如何安装Appium,以及一些基础获取App元素内容的方式.但认真看过前文的读者,肯定在博主获取元素的时候观察到了一个现象. 那就是手机App的内容并不是一次性加载出来的,比如大多数Android手机列表ListView,都是异步加载,也就是你滑动到那个位置,它才会显示出它的内容. 也就是说,我们前面爬取微博首页全部信息的时候,如果你不滑动先加载

  • Python手拉手教你爬取贝壳房源数据的实战教程

    一.爬虫是什么? 在进行大数据分析或者进行数据挖掘的时候,数据源可以从某些提供数据统计的网站获得,也可以从某些文献或内部资料中获得,但是这些获得数据的方式,有时很难满足我们对数据的需求,而手动从互联网中去寻找这些数据,则耗费的精力过大.此时就可以利用爬虫技术,自动地从互联网中获取我们感兴趣的数据内容,并将这些数据内容爬取回来,作为我们的数据源,从而进行更深层次的数据分析,并获得更多有价值的信息. 在使用爬虫前首先要了解爬虫所需的库(requests)或者( urllib.request ),该库

  • 使用selenium和pyquery爬取京东商品列表过程解析

    今天一起学起使用selenium和pyquery爬取京东的商品列表.本文的所有代码是在pycharm IDE中完成的,操作系统window 10. 1.准备工作 安装pyquery和selenium类库.依次点击file->settings,会弹出如下的界面: 然后依次点击:project->project Interpreter->"+",,如上图的红色框所示.然后会弹出下面的界面: 输入selenium,在结果列表中选中"selenium",点

  • 基于python爬取梨视频实现过程解析

    目标网址:梨视频 然后我们找到科技这一页:https://www.pearvideo.com/category_8.其实你要哪一页都行,你喜欢就行.嘿嘿- 这是动态网站,所以咱们直奔network 然后去到XHR: 找规律,这个应该不难,我就直接贴网址上来咯,想要锻炼的可以找找看哈: https://www.pearvideo.com/category_loading.jsp?reqType=5&categoryId=8&start=0 这个就是我们要找的目标网址啦,后面的0就代表页数,让

  • Python爬虫简单运用爬取代理IP的实现

    功能1: 爬取西拉ip代理官网上的代理ip 环境:python3.8+pycharm 库:requests,lxml 浏览器:谷歌 IP地址:http://www.xiladaili.com/gaoni/ 分析网页源码: 选中div元素后右键找到Copy再深入子菜单找到Copy Xpath点击一下就复制到XPath 我们复制下来的Xpth内容为:/html/body/div/div[3]/div[2]/table/tbody/tr[50]/td[1] 虽然可以查出来ip,但不利于程序自动爬取所有

  • python利用多线程+队列技术爬取中介网互联网网站排行榜

    目录 目标站点分析 编码时间 目标站点分析 本次要抓取的目标站点为:中介网,这个网站提供了网站排行榜.互联网网站排行榜.中文网站排行榜等数据. 网站展示的样本数据量是 :58341. 采集页面地址为 https://www.zhongjie.com/top/rank_all_1.html, UI如下所示:  由于页面存在一个[尾页]超链接,所以直接通过该超链接获取累计页面即可. 其余页面遵循简单分页规则: https://www.zhongjie.com/top/rank_all_1.html

随机推荐