Python并发编程协程(Coroutine)之Gevent详解

Gevent官网文档地址:http://www.gevent.org/contents.html

基本概念

我们通常所说的协程Coroutine其实是corporateroutine的缩写,直接翻译为协同的例程,一般我们都简称为协程。

在linux系统中,线程就是轻量级的进程,而我们通常也把协程称为轻量级的线程即微线程。

进程和协程

下面对比一下进程和协程的相同点和不同点:

相同点:

我们都可以把他们看做是一种执行流,执行流可以挂起,并且后面可以在你挂起的地方恢复执行,这实际上都可以看做是continuation,关于这个我们可以通过在linux上运行一个hello程序来理解:

shell进程和hello进程:

开始,shell进程在运行,等待命令行的输入

执行hello程序,shell通过系统调用来执行我们的请求,这个时候系统调用会讲控制权传递给操作系统。操作系统保存shell进程的上下文,创建一个hello进程以及其上下文并将控制权给新的hello进程。

hello进程终止后,操作系统恢复shell进程的上下文,并将控制权传回给shell进程

shell进程继续等待下个命令的输入

当我们挂起一个执行流的时,我们要保存的东西:

栈,其实在你切换前你的局部变量,以及要函数的调用都需要保存,否则都无法恢复

寄存器状态,这个其实用于当你的执行流恢复后要做什么

而寄存器和栈的结合就可以理解为上下文,上下文切换的理解:

CPU看上去像是在并发的执行多个进程,这是通过处理器在进程之间切换来实现的,操作系统实现这种交错执行的机制称为上下文切换

操作系统保持跟踪进程运行所需的所有状态信息。这种状态,就是上下文。

在任何一个时刻,操作系统都只能执行一个进程代码,当操作系统决定把控制权从当前进程转移到某个新进程时,就会进行上下文切换,即保存当前进程的上下文,恢复新进程的上下文,然后将控制权传递到新进程,新进程就会从它上次停止的地方开始。

不同点:

执行流的调度者不同,进程是内核调度,而协程是在用户态调度,也就是说进程的上下文是在内核态保存恢复的,而协程是在用户态保存恢复的,很显然用户态的代价更低

进程会被强占,而协程不会,也就是说协程如果不主动让出CPU,那么其他的协程,就没有执行的机会。

对内存的占用不同,实际上协程可以只需要4K的栈就足够了,而进程占用的内存要大的多

从操作系统的角度讲,多协程的程序是单进程,单协程

线程和协程

既然我们上面也说了,协程也被称为微线程,下面对比一下协程和线程:

线程之间需要上下文切换成本相对协程来说是比较高的,尤其在开启线程较多时,但协程的切换成本非常低。

同样的线程的切换更多的是靠操作系统来控制,而协程的执行由我们自己控制

我们通过下面的图更容易理解:

从上图可以看出,协程只是在单一的线程里不同的协程之间切换,其实和线程很像,线程是在一个进程下,不同的线程之间做切换,这也可能是协程称为微线程的原因吧

继续分析协程:

Gevent

Gevent是一种基于协程的Python网络库,它用到Greenlet提供的,封装了libevent事件循环的高层同步API。它让开发者在不改变编程习惯的同时,用同步的方式写异步I/O的代码。

使用Gevent的性能确实要比用传统的线程高,甚至高很多。但这里不得不说它的一个坑:

Monkey-patching,我们都叫猴子补丁,因为如果使用了这个补丁,Gevent直接修改标准库里面大部分的阻塞式系统调用,包括socket、ssl、threading和select等模块,而变为协作式运行。但是我们无法保证你在复杂的生产环境中有哪些地方使用这些标准库会由于打了补丁而出现奇怪的问题

第三方库支持。得确保项目中用到其他用到的网络库也必须使用纯Python或者明确说明支持Gevent

既然Gevent用的是Greenlet,我们通过下图来理解greenlet:

每个协程都有一个parent,最顶层的协程就是man thread或者是当前的线程,每个协程遇到IO的时候就把控制权交给最顶层的协程,它会看那个协程的IO event已经完成,就将控制权给它。

下面是greenlet一个例子

from greenlet import greenlet

def test1(x,y):
  z = gr2.switch(x+y)
  print(z)

def test2(u):
  print(u)
  gr1.switch(42)

gr1 = greenlet(test1)
gr2 = greenlet(test2)

gr1.switch("hello",'world')

greenlet(run=None, parent=None): 创建一个greenlet实例.
gr.parent:每一个协程都有一个父协程,当前协程结束后会回到父协程中执行,该 属性默认是创建该协程的协程.
gr.run: 该属性是协程实际运行的代码. run方法结束了,那么该协程也就结束了.
gr.switch(*args, **kwargs): 切换到gr协程.
gr.throw(): 切换到gr协程,接着抛出一个异常.

下面是gevent的一个例子:

import gevent
def func1():
  print("start func1")
  gevent.sleep(1)
  print("end func1")
def func2():
  print("start func2")
  gevent.sleep(1)
  print("end func2")

gevent.joinall(
  [
    gevent.spawn(func1),
    gevent.spawn(func2)
  ]
)

关于gevent中队列的使用

gevent中也有自己的队列,但是有一个场景我用的过程中发现一个问题,就是如果我在协程中通过这个q来传递数据,如果对了是空的时候,从队列获取数据的那个协程就会被切换到另外一个协程中,这个协程用于往队列里put放入数据,问题就出在,gevent不认为这个放入数据为IO操作,并不会切换到上一个协程中,会把这个协程的任务完成后在切换到另外一个协程。我原本想要实现的效果是往对了放入数据后就会切换到get的那个协程。(或许我这里理解有问题)下面是测试代码:

import gevent
from gevent.queue import Queue
def func():
  for i in range(10):

    print("int the func")
    q.put("test")
def func2():
  for i in range(10):
    print("int the func2")
    res = q.get()
    print("--->",res)
q = Queue()
gevent.joinall(
  [
    gevent.spawn(func2),
    gevent.spawn(func),
  ]
)

这段代码的运行效果为:

如果我在fun函数的q.put("test")后面添加gevent.sleep(0),就会是如下效果:

原本我预测的在不修改代码的情况下就应该是第二个图的结果,但是实际却是第一个图的结果(这个问题可能是我自己没研究明白,后面继续研究)

关于Gevent的问题

就像我上面说的gevent和第三方库配合使用会有一些问题,可以总结为:
python协程的库可以直接monkey path
C写成的库可以采用豆瓣开源的greenify来打patch(这个功能自己准备后面做测试)

不过总的来说gevent目前为止还是有很多缺陷,并且不是官网标准库,而在python3中有一个官网正在做并且在3.6中已经稳定的库asyncio,这也是一个非常具有野心的库,非常建议学习,我也准备后面深入了解

总结

以上就是本文关于Python并发编程协程(Coroutine)之Gevent详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

(0)

相关推荐

  • Python的网络编程库Gevent的安装及使用技巧

    安装(以CentOS为例) gevent依赖libevent和greenlet: 1.安装libevent 直接yum install libevent 然后配置python的安装 2.安装easy_install (1) wget -q http://peak.telecommunity.com/dist/ez_setup.py (2)使用 python ez_setup.py (3)使用easy_install 查看命令是否可用,如果不可用可以讲路径加入到PATH中 3.安装greenlet

  • Python的gevent框架的入门教程

    Python通过yield提供了对协程的基本支持,但是不完全.而第三方的gevent为Python提供了比较完善的协程支持. gevent是第三方库,通过greenlet实现协程,其基本思想是: 当一个greenlet遇到IO操作时,比如访问网络,就自动切换到其他的greenlet,等到IO操作完成,再在适当的时候切换回来继续执行.由于IO操作非常耗时,经常使程序处于等待状态,有了gevent为我们自动切换协程,就保证总有greenlet在运行,而不是等待IO. 由于切换是在IO操作时自动完成,

  • 在Python的gevent框架下执行异步的Solr查询的教程

    我经常需要用Python与solr进行异步请求工作.这里有段代码阻塞在Solr http请求上, 直到第一个完成才会执行第二个请求,代码如下: import requests #Search 1 solrResp = requests.get('http://mysolr.com/solr/statedecoded/search?q=law') for doc in solrResp.json()['response']['docs']: print doc['catch_line'] #Sea

  • Python并发编程协程(Coroutine)之Gevent详解

    Gevent官网文档地址:http://www.gevent.org/contents.html 基本概念 我们通常所说的协程Coroutine其实是corporateroutine的缩写,直接翻译为协同的例程,一般我们都简称为协程. 在linux系统中,线程就是轻量级的进程,而我们通常也把协程称为轻量级的线程即微线程. 进程和协程 下面对比一下进程和协程的相同点和不同点: 相同点: 我们都可以把他们看做是一种执行流,执行流可以挂起,并且后面可以在你挂起的地方恢复执行,这实际上都可以看做是con

  • Go 并发编程协程及调度机制详情

    目录 协程的概念 goroutine 的诞生 使用 goroutine 加快速度 goroutine 的机制原理 前言: 协程(coroutine)是 Go 语言最大的特色之一,goroutine 的实现其实是通过协程. 协程的概念 协程一词最早出现在 1963 年发表的论文中,该论文的作者为美国计算机科学家 Melvin E.Conway.著名的康威定律:“设计系统的架构受制于产生这些设计的组织的沟通结构.” 也是这个作者. 协程是一种用户态的轻量级线程,可以想成一个线程里面可以有多个协程,而

  • Kotlin协程Dispatchers原理示例详解

    目录 前置知识 demo startCoroutineCancellable intercepted()函数 DefaultScheduler中找dispatch函数 Runnable传入 Worker线程执行逻辑 小结 前置知识 Kotlin协程不是什么空中阁楼,Kotlin源代码会被编译成class字节码文件,最终会运行到虚拟机中.所以从本质上讲,Kotlin和Java是类似的,都是可以编译产生class的语言,但最终还是会受到虚拟机的限制,它们的代码最终会在虚拟机上的某个线程上被执行. 之

  • Golang控制协程执行顺序方法详解

    目录 循环控制 通道控制 互斥锁 async.Mutex 在 Go 里面的协程执行实际上默认是没有严格的先后顺序的.由于 Go 语言 GPM 模型的设计理念,真正执行实际工作的实际上是 GPM 中的 M(machine) 执行器,而我们的协程任务 G(goroutine) 协程需要被 P(produce) 关联到某个 M 上才能被执行.而每一个 P 都有一个私有队列,除此之外所有的 P 还共用一个公共队列.因此当我们创建了一个协程之后,并不是立即执行,而是进入队列等待被分配,且不同队列之间没有顺

  • Python中的协程(Coroutine)操作模块(greenlet、gevent)

    目录 一.协程介绍 1.介绍 2.举例 3.优点如下: 4.缺点如下: 5.总结协程特点: 二.greenlet(绿叶)模块 1.安装模块 2.greenlet实现状态切换 3.效率对比 三.gevent模块 1.安装 2. 用法介绍 1.遇到io主动切换 2. 查看threading.current_thread().getName() 3.Gevent之同步与异步 4.Gevent之应用 1. 服务端 2.多线程并发多个客户端 一.协程介绍 协程:英文名Coroutine,是单线程下的并发,

  • python函数式编程学习之yield表达式形式详解

    前言 yield的英文单词意思是生产,刚接触Python的时候感到非常困惑,一直没弄明白yield的用法.最近又重新学习了下,所以整理了下面这篇文章,供自己和大家学习参考,下面话不多说了,来一起看看详细的介绍吧. 先来看一个例子 def foo(): print("starting...") while True: res = yield print("res:",res) g = foo() next(g) 在上面的例子里,因为foo函数中有yield关键字,所以

  • PHP7下协程的实现方法详解

    前言 相信大家都听说过『协程』这个概念吧. 但是有些同学对这个概念似懂非懂,不知道怎么实现,怎么用,用在哪,甚至有些人认为yield就是协程! 我始终相信,如果你无法准确地表达出一个知识点的话,我可以认为你就是不懂. 如果你之前了解过利用PHP实现协程的话,你肯定看过鸟哥的那篇文章:在PHP中使用协程实现多任务调度| 风雪之隅 鸟哥这篇文章是从国外的作者翻译来的,翻译的简洁明了,也给出了具体的例子了. 我写这篇文章的目的,是想对鸟哥文章做更加充足的补充,毕竟有部分同学的基础还是不够好,看得也是云

  • PHP生成器(generator)和协程的实现方法详解

    本文实例讲述了PHP生成器(generator)和协程的实现方法.分享给大家供大家参考,具体如下: 先说一些废话 PHP 5.5 以来,新的诸多特性又一次令 PHP 焕发新的光彩,虽然在本文写的时候已是 PHP 7 alpha 2 发布后的一段时间,但此时国内依旧是 php 5.3 的天下.不过我认为新的特性迟早会因为旧的版本的逐渐消失而变得越发重要,尤其是 PHP 7 的正式版出来后,因此本文的目的就是为了在这之前,帮助一些 PHPer 了解一些他们从没有了解的东西.所以打算将以本篇作为博客中

  • Java并发编程之显式锁机制详解

    我们之前介绍过synchronized关键字实现程序的原子性操作,它的内部也是一种加锁和解锁机制,是一种声明式的编程方式,我们只需要对方法或者代码块进行声明,Java内部帮我们在调用方法之前和结束时加锁和解锁.而我们本篇将要介绍的显式锁是一种手动式的实现方式,程序员控制锁的具体实现,虽然现在越来越趋向于使用synchronized直接实现原子操作,但是了解了Lock接口的具体实现机制将有助于我们对synchronized的使用.本文主要涉及以下一些内容: 接口Lock的基本组成成员 可重入锁Re

  • Java并发编程线程间通讯实现过程详解

    在Java中线程间通讯有多种方式,我这里列出一些常用方式,并用代码的方式展示他们是如何实现的: 共享变量 wait, notify,notifyAll(这3个方法是Object对象中的方法,且必须与synchronized关键字结合使用) CyclicBarrier.CountDownLatch 利用LockSupport Lock/Condition机制 管道,创建管道输出流PipedOutputStream和管道输入流PipedInputStream 示例一: package com.zhi

随机推荐