numpy.linalg.eig() 计算矩阵特征向量方式
在PCA中有遇到,在这里记录一下
计算矩阵的特征值个特征向量,下面给出几个示例代码:
在使用前需要单独import一下
>>> from numpy import linalg as LA
>>> w, v = LA.eig(np.diag((1, 2, 3))) >>> w; v array([ 1., 2., 3.]) array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]])
>>> w, v = LA.eig(np.array([[1, -1], [1, 1]])) >>> w; v array([ 1. + 1.j, 1. - 1.j]) array([[ 0.70710678+0.j , 0.70710678+0.j ], [ 0.00000000-0.70710678j, 0.00000000+0.70710678j]])
>>> a = np.array([[1, 1j], [-1j, 1]]) >>> w, v = LA.eig(a) >>> w; v array([ 2.00000000e+00+0.j, 5.98651912e-36+0.j]) # i.e., {2, 0} array([[ 0.00000000+0.70710678j, 0.70710678+0.j ], [ 0.70710678+0.j , 0.00000000+0.70710678j]])
>>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]]) >>> # Theor. e-values are 1 +/- 1e-9 >>> w, v = LA.eig(a) >>> w; v array([ 1., 1.]) array([[ 1., 0.], [ 0., 1.]])
官方文档链接:http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html
以上这篇numpy.linalg.eig() 计算矩阵特征向量方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
numpy linalg模块的具体使用方法
最近在看机器学习的 LogisticRegressor,BayesianLogisticRegressor算法,里面得到一阶导数矩阵g和二阶导数Hessian矩阵H的时候,用到了这个模块进行求解运算,记录一下. numpy.linalg模块包含线性代数的函数.使用这个模块,可以计算逆矩阵.求特征值.解线性方程组以及求解行列式等. import numpy as np # 1. 计算逆矩阵 # 创建矩阵 A = np.mat("0 1 2;1 0 3;4 -3 8") print (A)
-
python中numpy的矩阵、多维数组的用法
1. 引言 最近在将一个算法由matlab转成python,初学python,很多地方还不熟悉,总体感觉就是上手容易,实际上很优雅地用python还是蛮难的.目前为止,觉得就算法仿真研究而言,还是matlab用得特别舒服,可能是比较熟悉的缘故吧.matlab直接集成了很多算法工具箱,函数查询.调用.变量查询等非常方便,或许以后用久了python也会感觉很好用.与python相比,最喜欢的莫过于可以直接选中某段代码执行了,操作方便,python也可以实现,就是感觉不是很方便. 言归正传,做算法要用
-
Numpy中对向量、矩阵的使用详解
在下面的代码里面,我们利用numpy和scipy做了很多工作,每一行都有注释,讲解了对应的向量/矩阵操作. 归纳一下,下面的代码主要做了这些事: 创建一个向量 创建一个矩阵 创建一个稀疏矩阵 选择元素 展示一个矩阵的属性 对多个元素同时应用某种操作 找到最大值和最小值 计算平均值.方差和标准差 矩阵变形 转置向量或矩阵 展开一个矩阵 计算矩阵的秩 计算行列式 获取矩阵的对角线元素 计算矩阵的迹 计算特征值和特征向量 计算点积 矩阵的相加相减 矩阵的乘法 计算矩阵的逆 一起来看代码吧: # 加载n
-
基于Python Numpy的数组array和矩阵matrix详解
NumPy的主要对象是同种元素的多维数组.这是一个所有的元素都是一种类型.通过一个正整数元组索引的元素表格(通常是元素是数字). 在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank,但是和线性代数中的秩不是一样的,在用python求线代中的秩中,我们用numpy包中的linalg.matrix_rank方法计算矩阵的秩,例子如下). 结果是: 线性代数中秩的定义:设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那末D称为矩阵
-
numpy.linalg.eig() 计算矩阵特征向量方式
在PCA中有遇到,在这里记录一下 计算矩阵的特征值个特征向量,下面给出几个示例代码: 在使用前需要单独import一下 >>> from numpy import linalg as LA >>> w, v = LA.eig(np.diag((1, 2, 3))) >>> w; v array([ 1., 2., 3.]) array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) >>>
-
使用numpy.mean() 计算矩阵均值方式
目录 numpy.mean计算矩阵均值 均值函数numpy.mean mean是numpy中常用的求均值函数 numpy.mean计算矩阵均值 计算矩阵的均值 >>> a = np.array([[1, 2], [3, 4]]) >>> np.mean(a) # 将上面二维矩阵的每个元素相加除以元素个数(求平均数) 2.5 >>> np.mean(a, axis=0) # axis=0,计算每一列的均值 array([ 2., 3.]) >&g
-
numpy求矩阵的特征值与特征向量(np.linalg.eig函数用法)
目录 求矩阵的特征值与特征向量(np.linalg.eig) 语法 功能 Parameters Returns Raises Ralated Function: Notes Examples 总结 求矩阵的特征值与特征向量(np.linalg.eig) 语法 np.linalg.eig(a) 功能 Compute the eigenvalues and right eigenvectors of a square array. 求方阵(n x n)的特征值与右特征向量 Parameters a
-
C++ Eigen库计算矩阵特征值及特征向量
本文主要讲解利用Eigen库计算矩阵的特征值及特征向量并与Matlab计算结果进行比较. C++Eigen库代码 #include <iostream> #include <Eigen/Dense> #include <Eigen/Eigenvalues> using namespace Eigen; using namespace std; void Eig() { Matrix3d A; A << 1, 2, 3, 4, 5, 6, 7, 8, 9; c
-
numpy.std() 计算矩阵标准差的方法
计算矩阵标准差 >>> a = np.array([[1, 2], [3, 4]]) >>> np.std(a) # 计算全局标准差 1.1180339887498949 >>> np.std(a, axis=0) # axis=0计算每一列的标准差 array([ 1., 1.]) >>> np.std(a, axis=1) # 计算每一行的标准差 array([ 0.5, 0.5]) 官方手册:http://docs.scipy.
-
Python Numpy实现计算矩阵的均值和标准差详解
目录 一.前言 二.详解计算均值和标准差 三.实践:CRITIC权重法计算变异系数 一.前言 CRITIC权重法是一种比熵权法和标准离差法更好的客观赋权法: 它是基于评价指标的对比强度和指标之间的冲突性来综合衡量指标的客观权重.考虑指标变异性大小的同时兼顾指标之间的相关性,并非数字越大就说明越重要,完全利用数据自身的客观属性进行科学评价. 对比强度是指同一个指标各个评价方案之间取值差距的大小,以标准差的形式来表现.标准差越大,说明波动越大,即各方案之间的取值差距越大,权重会越高: 指标之间的冲突
-
浅谈numpy数组的几种排序方式
简单介绍 NumPy系统是Python的一种开源的数组计算扩展.这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)). 创建数组 创建1维数组: data = np.array([1,3,4,8]) 查看数组维度 data.shape 查看数组类型 data.dtype 通过索引获取或修改数组元素 data[1] 获取元素 data[1] = 'a' 修改元素 创建二维数组 data
-
在python Numpy中求向量和矩阵的范数实例
np.linalg.norm(求范数):linalg=linear(线性)+algebra(代数),norm则表示范数. 函数参数 x_norm=np.linalg.norm(x, ord=None, axis=None, keepdims=False) ①x: 表示矩阵(也可以是一维) ②ord:范数类型 向量的范数: 矩阵的范数: ord=1:列和的最大值 ord=2:|λE-ATA|=0,求特征值,然后求最大特征值得算术平方根 ord=∞:行和的最大值 ③axis:处理类型 axis=1表
-
Python计算矩阵的和积的实例详解
python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包. 一.numpy的导入和使用 from numpy import *;#导入numpy的库函数 import numpy as np; #这个方式使用numpy的函数时,需要以np.开头. 二.矩阵的创建 由一维或二维数据创建矩阵 from numpy import *; a1=array([1,2,3]); a1=mat(a1); 创建常见的矩阵 data1=mat(zeros((3,3)));
随机推荐
- 学习ExtJS Window常用方法
- 删除SVN三种方法delSvn(windows+linux)
- FCKeditor2.3 For PHP 详细整理的使用参考
- 用wasfile.zip智能批量删除文件
- Event altKey,ctrlKey,shiftKey属性解析
- js每隔两秒输出数组中的一项(实例)
- 利用MS AJAX注册Javascript命名空间并创建类
- 在Python的Django框架中创建语言文件
- MySQL索引使用全程分析
- 取随机记录的语句
- 了解jQuery技巧来提高你的代码
- 一个最简单的级联下拉菜单
- 护卫神 主机管理系统使用说明(MySQL管理)
- IIS下还原备份xml配置文件的方法
- C++中拷贝构造函数的应用详解
- PHP Laravel实现文件下载功能
- Android 设置颜色的方法总结
- 使用c语言生成随机数的示例分享
- C语言约瑟夫环的实现
- 微信小程序实现的自定义分享功能示例