Python获取android设备cpu和内存占用情况

功能:获取android设备中某一个app的cpu和内存

环境:python和adb

使用方法:使用adb连接android设备,打开将要测试的app,执行cpu/内存代码

cpu获取代码如下:(输入参数为脚本执行时间)

# coding:utf-8
'''
获取系统total cpu
'''
import os, csv
import time
import csv
import numpy as np
from matplotlib import pyplot as plt

cpu_list = []
time_list = []
app_list = []
lines = []
package_name = []

# 读取进程名称(包名)
def get_applist():
  global package_name
  with open('config/director.txt', encoding='utf-8', mode='r') as f:
    lines_all = f.readlines()
    for appname in lines_all:
      package_name1 = appname
      appname_new = appname[0:15]
      package_name.append(package_name1)
      lines.append(appname_new)
    for line in lines:
      app_list.append(line.strip())

# 获取cpu数值
def get_cpu():
  global filename
  with open(filename, encoding="utf-8", mode="r") as f:
    lines = f.readlines()
    for appname in app_list:
      for lis in lines:
        # 适配低版本手机
        if appname in lis and '%' in lis:
          now = time.strftime("%H:%M:%S", time.localtime())
          time_list.append(now)
          cpu_1 = lis.split('%')[0]
          cpu_2 = cpu_1.split(' ')
          # print(cpu_2)
          cpu = cpu_2[len(cpu_2) - 1]
          print(cpu, now)
          cpu_list.append(cpu)
          break
        # 适配高版本手机
        elif appname in lis:
          now = time.strftime("%H:%M:%S", time.localtime())
          time_list.append(now)
          cpu1 = lis.split(' ')
          # print(cpu1)
          cpu2 = list(set(cpu1))
          cpu2.sort(key=cpu1.index)
          cpu_h = cpu2[len(cpu2) - 4]
          print(cpu_h, now)
          cpu_list.append(cpu_h)
          break
        else:
          pass

# csv头部
def write_head():
  headers = ['name:']
  headers.append(app_list[0])
  headers.append('init_cpu')
  with open('log_su/cpuinfo.csv', 'w+', newline='') as csvfile:
    writer = csv.DictWriter(csvfile, fieldnames=headers)
    writer.writeheader()

# 将数值写入csv,用于绘图时读取
def write_report():
  # headers = ['name', 'aaa', 'init_cpu']
  with open('log_su/cpuinfo.csv', 'a+', newline='') as csvfile:
    writer = csv.writer(csvfile)
    for key in cpu_list:
      writer.writerow([' ', ' ', key])

# 绘制折线图,生成测试报告
def mapping():
  filename = 'log_su/cpuinfo.csv'
  with open(filename) as f:
    reader = csv.reader(f)
    header_row = next(reader)
    highs = []
    for row in reader:
      high = row[2]
      highs.append(high)
    # print(highs)

  wights = time_list
  highs_float = list(map(float, highs))
  # print(f"****{highs}")
  print(f"CPU值:{highs_float}")
  # 输出平均值
  total = 0
  for value in highs_float:
    total += value
  average = round(total/len(highs_float), 2)
  print(f"CPU平均值:{average}")

  #输出最低值和最高值
  highs_hl = sorted(highs_float)
  print(f"CPU最低值:{highs_hl[0]}")
  print(f"CPU最高值:{highs_hl[len(highs_hl)-1]}")

  # 根据数据绘制图形
  plt.figure(figsize=(11, 4), dpi=600)
  # 生成网格
  # plt.grid()
  plt.grid(axis="y")
  # 折线图
  if package_name[0] == 'com.oneapp.max.security.pro.cn':
    plt.plot(wights, highs_float, "c-", linewidth=1, label="PPP")
  elif package_name[0] == 'com.oneapp.max.cn':
    plt.plot(wights, highs_float, "c-", linewidth=1, label="Opt1.6.1")
  elif package_name[0] == 'com.boost.clean.coin.cn':
    plt.plot(wights, highs_float, "c-", linewidth=1, label="Fastclear")
  elif package_name[0] == 'com.walk.sports.cn':
    plt.plot(wights, highs_float, "c-", linewidth=1, label="Walk")
  elif package_name[0] == 'com.diamond.coin.cn':
    plt.plot(wights, highs_float, "c-", linewidth=1, label="Amber")
  elif package_name[0] == 'com.oneapp.max.cleaner.booster.cn':
    plt.plot(wights, highs_float, "c-", linewidth=1, label="Space")
  else:
    plt.plot(wights, highs_float, "c-", linewidth=1, label=package_name[0])
  # 坐标轴范围
  # plt.ylim(300, 400)
  # plt.xlim(0, 10)

  plt.xlabel('time(H:Min:S)', fontsize=16)
  plt.ylabel("cpu_realtime(%)", fontsize=16)
  plt.title("cpu real time line chart", fontsize=24)
  plt.legend()

  # 横坐标显示间隔
  if len(wights) <= 15:
    pass
  else:
    t = int(len(wights) / 15)
    plt.xticks(range(0, len(wights), t))

  # 纵坐标显示间隔
  # plt.yticks(range(100, 300, 10))

  # 旋转日期
  plt.gcf().autofmt_xdate()

  # 展示每个坐标
  # for a, b in zip(wights, highs_float):
  #   plt.text(a, b, (a, b), ha='center', va='bottom', fontsize=8)

  # plt.show()

  time_now = time.strftime("%m%d-%H:%M:%S", time.localtime())
  path = "report/" + time_now
  plt.savefig(path)

# 自动识别当前需检测的
def name_app():
  cmd = 'adb shell dumpsys window | grep mCurrentFocus > log_su/name_info.csv'
  os.system(cmd)
  with open('log_su/name_info.csv', encoding='utf-8', mode='r') as f:
    lines = f.readlines()
    for line in lines:
      if 'mCurrentFocus' in line:
        name1 = line.split('/')[0].split(' ')
        name = name1[len(name1) - 1]

  with open('config/director.txt', encoding='utf-8', mode='w') as f_name:
    text = name
    f_name.write(text)
  print(f"将要监测的包名为:{text}")

#控制监测时间
def time_control():
  global filename
  while True:
    end_time = time.time()
    if (end_time - start_time)/60 >= tol_time:  #分钟
    # if end_time - start_time >= tol_time: # 秒
      break

    time.sleep(1)
    adb = "adb shell top -n 1 > log_su/adb_info.csv"
    d = os.system(adb)
    filename = "log_su/adb_info.csv"
    get_cpu()

if __name__ == "__main__":
  name_app()
  tol_time = int(input("请输入脚本执行时间(分钟):"))
  start_time = time.time()
  get_applist()
  write_head()
  time_control()
  write_report()
  mapping()

会在.py文件同级目录下生成3个文件夹,config、log_su、report,其中运行结果在report中

结果以是生成折线图,看起来直观,如下:

这里我解释下,cpu占比是adb获取的实时占比,但是满值并不一定是100%,比如这张图,用的是一个八核的手机,所以CPU满值是800%

内存获取代码如下:(输入参数为脚本执行时间)

# coding:utf-8
'''
获取系统total memory
'''
import os, csv
import time
import csv
import numpy as np
from matplotlib import pyplot as plt

mem_dict = {}
time_list = []
app_list = []
package_name = []
t = 0
def get_applist():
  global package_name
  with open('config/director.txt', encoding='utf-8', mode='r') as f:
    lines = f.readlines()
    for line in lines:
      package_name1 = line
      package_name.append(package_name1)
      app_list.append(line.strip())

def get_mem():
  global filename
  with open(filename, encoding="utf-8", mode="r") as f:
    lines = f.readlines()
    start_flag = False
    for appname in app_list:
      for line in lines:
        if "Total PSS by OOM adjustment" in line:
          break
        if appname in line and 'pid' in line and 'kB' in line:
          mem_v = line.strip().split(':')[0].replace('kB', '').replace(',', '')
          line_name = line.split(':')[1].split('(')[0].strip()
          if line_name in appname:
            mem_v = round(float(mem_v) / 1024, 2)
            mem_dict[appname] = mem_v
            now_v = time.strftime("%H:%M:%S", time.localtime())
            # now_int = int(now_v)
            time_list.append(now_v)
            print(mem_v, now_v)
            break
        elif appname in line and 'pid' in line and 'K' in line:
          mem_v = line.strip().split(':')[0].replace('K', '').replace(',', '')
          line_name = line.split(':')[1].split('(')[0].strip()
          if line_name in appname:
            mem_v = round(float(mem_v) / 1024, 2)
            mem_dict[appname] = mem_v
            now_v = time.strftime("%H:%M:%S", time.localtime())
            # now_int = int(now_v)
            time_list.append(now_v)
            print(mem_v, now_v)
            break

def write_head():
  headers = ['name:']
  headers.append(app_list[0])
  headers.append('init_mem')
  with open('log_su/meminfo.csv', 'w+', newline='') as csvfile:
    writer = csv.DictWriter(csvfile, fieldnames=headers)
    writer.writeheader()

def write_report():
  headers = ['name','aaa', 'init_mem']
  with open('log_su/meminfo.csv', 'a+', newline='') as csvfile:
    writer = csv.DictWriter(csvfile, fieldnames=headers)
    for key in mem_dict:
      writer.writerow({'init_mem': mem_dict[key]})

def mapping():
  filename = 'log_su/meminfo.csv'
  with open(filename) as f:
    reader = csv.reader(f)
    header_row = next(reader)
    highs = []
    for row in reader:
      high = row[2]
      highs.append(high)
    # print(highs)

  wights = time_list
  highs_float = list(map(float, highs))

  print(f"内存值:{highs_float}")

  # 输出平均值
  total = 0
  for value in highs_float:
    total += value
  average = round(total / len(highs_float), 2)
  print(f"内存平均值:{average}")

  # 输出最低值和最高值
  highs_hl = sorted(highs_float)
  print(f"内存最低值:{highs_hl[0]}")
  print(f"内存最高值:{highs_hl[len(highs_hl) - 1]}")

  # 根据数据绘制图形

  plt.figure(figsize=(11, 4), dpi=600)

  # 生成网格
  # plt.grid()
  plt.grid(axis="y")

  if package_name[0] == 'com.oneapp.max.security.pro.cn':
    plt.plot(wights, highs_float, "c-", linewidth=1, label="PPP")
  elif package_name[0] == 'com.oneapp.max.cn':
    plt.plot(wights, highs_float, "c-", linewidth=1, label="Opt")
  elif package_name[0] == 'com.boost.clean.coin.cn':
    plt.plot(wights, highs_float, "c-", linewidth=1, label="fastclear")
  elif package_name[0] == 'com.walk.sports.cn':
    plt.plot(wights, highs_float, "c-", linewidth=1, label="Walk")
  elif package_name[0] == 'com.diamond.coin.cn':
    plt.plot(wights, highs_float, "c-", linewidth=1, label="Amber")
  elif package_name[0] == 'com.oneapp.max.cleaner.booster.cn':
    plt.plot(wights, highs_float, "c-", linewidth=1, label="Space")
  else:
    plt.plot(wights, highs_float, "c-", linewidth=1, label=package_name[0])
  # 坐标轴范围
  # plt.ylim(300, 400)
  # plt.xlim(0, 10)

  plt.xlabel('time(H:Min:S)', fontsize=16)
  plt.ylabel("Number (Mb)", fontsize=16)
  plt.title("meminfo", fontsize=24)
  plt.legend()

  # 横坐标显示间隔
  if len(wights) <= 15:
    pass
  else:
    t = int(len(wights) / 15)
    plt.xticks(range(0, len(wights), t))

  # 坐标刻度
  # my_y_ticks = np.arange(300, 400, 10)
  # my_x_ticks = np.arange(1, 10, 1)
  # plt.xticks(my_x_ticks)
  # plt.yticks(my_y_ticks)
  # plt.yticks(range(100, 300, 10))

  #旋转日期
  plt.gcf().autofmt_xdate()

  # 展示每个坐标
  # for a, b in zip(wights, highs_float):
  #   plt.text(a, b, (a, b), ha='center', va='bottom', fontsize=8)

  # plt.show()

  time_now = time.strftime("%m%d-%H:%M:%S", time.localtime())
  path = "report/" + time_now
  plt.savefig(path)

def name_app():
  cmd = 'adb shell dumpsys window | grep mCurrentFocus > log_su/name_info.csv'
  os.system(cmd)
  with open('log_su/name_info.csv', encoding='utf-8', mode='r') as f:
    lines = f.readlines()
    for line in lines:
      if 'mCurrentFocus' in line:
        name1 = line.split('/')[0].split(' ')
        name = name1[len(name1) - 1]

  with open('config/director.txt', encoding='utf-8', mode='w') as f_name:
    text = name
    f_name.write(text)
  print(f"将要监测的包名为:{text}")

def time_control():
  global filename
  while True:
    end_time = time.time()
    if (end_time - start_time)/60 >= tol_time:  #分钟
    # if end_time - start_time >= tol_time:  #秒
      break
    # time.sleep(2)
    # filename = str(input("请输入文件名:"))
    adb = "adb shell dumpsys meminfo > log_su/adb_info.csv"
    d = os.system(adb)
    filename = "log_su/adb_info.csv"
    get_mem()
    write_report()

if __name__ == "__main__":
  name_app()
  tol_time = int(input("请输入脚本执行时间(分钟):"))
  start_time = time.time()
  get_applist()
  write_head()
  time_control()
  mapping()

会在.py文件同级目录下生成3个文件夹,config、log_su、report,其中运行结果在report中

生成的内存结果图如下:

到此这篇关于Python获取android设备cpu和内存占用情况的文章就介绍到这了,更多相关Python获取android设备内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 通过Python 获取Android设备信息的轻量级框架

    今天跟大家分享一下,如何通过Python实现一个轻量级的库来获取电脑上连接的Android设备信息,为什么说轻量呢因为整个库也就4KB,相比其他诸如Appetizer这样动辄就8MB多的库要轻很多,而且也基本满足项目中的需求. 这个库只有一个文件,通过封装Android的ADB命令实现,返回的是一个包含所有设备信息的标准json格式的列表方便解析,下面简单介绍一下: 检查环境变量 # 判断是否设置环境变量ANDROID_HOME if "ANDROID_HOME" in os.envi

  • python获取android设备的GPS信息脚本分享

    在android上,我们可以使用QPython来编写.执行Python脚本.它对很多android 系统函数进行了方便的封装,使用QPython编写功能简单的小程序异常方便. 这个示例是我之前用来读取手机位置信息并作为进一步处理数据的基础脚本. 复制代码 代码如下: # -*- coding: utf-8 -*- import androidhelper import time from math import radians droid = androidhelper.Android() dr

  • Python获取android设备cpu和内存占用情况

    功能:获取android设备中某一个app的cpu和内存 环境:python和adb 使用方法:使用adb连接android设备,打开将要测试的app,执行cpu/内存代码 cpu获取代码如下:(输入参数为脚本执行时间) # coding:utf-8 ''' 获取系统total cpu ''' import os, csv import time import csv import numpy as np from matplotlib import pyplot as plt cpu_list

  • 10种检测Python程序运行时间、CPU和内存占用的方法

    在运行复杂的Python程序时,执行时间会很长,这时也许想提高程序的执行效率.但该怎么做呢? 首先,要有个工具能够检测代码中的瓶颈,例如,找到哪一部分执行时间比较长.接着,就针对这一部分进行优化. 同时,还需要控制内存和CPU的使用,这样可以在另一方面优化代码. 因此,在这篇文章中我将介绍7个不同的Python工具,来检查代码中函数的执行时间以及内存和CPU的使用. 1. 使用装饰器来衡量函数执行时间 有一个简单方法,那就是定义一个装饰器来测量函数的执行时间,并输出结果: import time

  • java如何获取系统CPU、内存占用

    说明:获取的数据是操作系统整体的资源占用情况,不是当前 java进程占用的资源 1. 获取系统CPU占用情况 : import java.lang.management.ManagementFactory; import com.sun.management.OperatingSystemMXBean; private static OperatingSystemMXBean osmxb = (OperatingSystemMXBean) ManagementFactory.getOperati

  • Python 如何查看程序内存占用情况

    目录 查看程序内存占用情况 python查看内存使用 查看程序内存占用情况 flyfish psutil 这里用在查看内存占用情况 memory_profiler输出每一行代码增减的内存 安装 pip install memory_profiler 代码 import numpy as np import os import psutil import gc from memory_profiler import profile @profile def test():     a=np.ful

  • Python中使用MELIAE分析程序内存占用实例

    写的dht协议搜索的程序,这几天优化了一下发现速度确实快了好多.但是出现了一个新的问题,内存直接飙升,我开了十个爬虫占用内存800m.开始我以为是节点太多了,找了几个小问题修改一下,发现没用.后来就到网上查找python内存分析的工具,查了一点资料发现python有个meliae库操作非常方便,就使用分析了一下,发现不是节点太多的原因0 0,是保存发送的t_id,用来标示返回的消息是那个发出的一个字典过大了. 从分析的结果非常容易的定位了某个对象的数量和大小,非常容易分析.我开始以为是因为好多发

  • python获取当前计算机cpu数量的方法

    本文实例讲述了python获取当前计算机cpu数量的方法.分享给大家供大家参考.具体分析如下: 这里实际上返回的是计算机的cpu核心数,比如cpu是双核的,则返回2,如果双四核cpu,则返回8 from multiprocessing import cpu_count print(cpu_count()) 本机是四核电脑,返回结果:4 希望本文所述对大家的Python程序设计有所帮助.

  • 如何获取Android设备挂载的所有存储器

    android系统提供了Environment.getExternalStorageDirectory()接口获得存储器的路径,但是这个接口往往给的结果并不是我们想要的,在某些设备上它返回的是手机内部存储,某些设备它返回的手机外部存储.还有就是某些Android设备支持扩展多个sdcard,这个时候想要获得所有存储器的挂载路径,这个接口是没有办法办到的. 怎么获取Android设备所有存储器的位置呢?或者说获得所有的挂载点 系统提供了一个StorageManager,它有一个方法叫getVolu

  • 详解C#获取特定进程CPU和内存使用率

    首先是获取特定进程对象,可以使用Process.GetProcesses()方法来获取系统中运行的所有进程,或者使用Process.GetCurrentProcess()方法来获取当前程序所对应的进程对象.当有了进程对象后,可以通过进程对象名称来创建PerformanceCounter类型对象,通过设定PerformanceCounter构造函数的参数实现获取特定进程的CPU和内存使用情况. 具体实例代码如下: 首先是获取本机中所有进程对象,分别输出某一时刻各个进程的内存使用情况: using

随机推荐