opencv之为图像添加边界的方法示例

我们经常会有对图像边缘做扩展的需求.比如

希望卷积后得到的矩阵大小不变希望改变图像大小,但是不改变宽高比opencv实现

opencv中使用copyMakeBorder()来完成这一功能

api

  1. src是原图像矩阵
  2. dst是新图像矩阵
  3. top/bottom/left/right是边界扩展的大小(比如5就代表5个像素)
  4. borderType
  5. value是扩充的像素填什么值

borderType分两种:

BORDER_CONSTANT
边缘填充用固定像素值,比如填充黑边,就用0,白边255

BORDER_REPLICATE
用原始图像相应的边缘的像素去做填充,看起来有一种把图像边缘"拉糊了"的效果

opencv示例

import sys
import cv2 as cv

def test():
 src = cv.imread("/home/sc/disk/keepgoing/opencv_test/lights.jpeg")
 top = int(0.05 * src.shape[0]) # shape[0] = rows
 bottom = top
 left = int(0.04 * src.shape[1]) # shape[1] = cols
 right = left

 value = [0,0,0]
 borderType = cv.BORDER_CONSTANT
 dst1 = cv.copyMakeBorder(src, top, bottom, left, right, borderType, None, value)

 borderType = cv.BORDER_REPLICATE
 dst2 = cv.copyMakeBorder(src, top, bottom, left, right, borderType, None, value)

 cv.imshow("blackborder",dst1)
 cv.imshow("BORDER_REPLICATE",dst2)

 if 27 == cv.waitKey():
  cv.destroyAllWindows()

test()

效果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 基于OpenCV的PHP图像人脸识别技术

    openCV是一个开源的用C/C++开发的计算机图形图像库,非常强大,研究资料很齐全.本文重点是介绍如何使用php来调用其中的局部的功能.人脸侦查技术只是openCV一个应用分支. 1.安装 从源代码编译成一个动态的so文件. 1.1.安装 OpenCV (OpenCV 1.0.0) 下载地址:http://sourceforge.net/project/showfiles.php?group_id=22870&package_id=16948 #tar xvzf OpenCV-1.0.0.ta

  • python用opencv批量截取图像指定区域的方法

    代码如下 import os import cv2 for i in range(1,201): if i==169 or i==189: i = i+1 pth = "C:\\Users\\Desktop\\asd\\"+str(i)+".bmp" image = cv2.imread(pth) //从指定路径读取图像 cropImg = image[600:1200,750:1500] //获取感兴趣区域 cv2.imwrite("C:\\Users\

  • OpenCV图像分割中的分水岭算法原理与应用详解

    图像分割是按照一定的原则,将一幅图像分为若干个互不相交的小局域的过程,它是图像处理中最为基础的研究领域之一.目前有很多图像分割方法,其中分水岭算法是一种基于区域的图像分割算法,分水岭算法因实现方便,已经在医疗图像,模式识别等领域得到了广泛的应用. 1.传统分水岭算法基本原理 分水岭比较经典的计算方法是L.Vincent于1991年在PAMI上提出的[1].传统的分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一像素的灰度值表示该点的海

  • OpenCV实现多图像拼接成一张大图

    本文实例为大家分享了OpenCV实现多图像拼接成大图的具体代码,供大家参考,具体内容如下 开始尝试merge函数,具体如下: 定义四个矩阵A,B,C,D.得到矩阵combine. #include<iostream> #include <core/core.hpp> #include <opencv2/imgproc/imgproc.hpp> #include <opencv2/highgui/highgui.hpp> using namespace std

  • 实现opencv图像裁剪分屏显示示例

    使用OPENCV图像处理库,将图片裁剪分屏显示 复制代码 代码如下: //#include "stdafx.h"#include <opencv2/opencv.hpp> //#include <opencv2/imgproc/imgproc.hpp>//#include <opencv2/highgui/highgui.hpp>#include <iostream>#include <vector>using namespa

  • 使用opencv拉伸图像扩大分辨率示例

    使用OPENCV图像处理库,拉伸图像扩大分辨率 复制代码 代码如下: //缩放图像文件#include <opencv2/opencv.hpp>using namespace std;//隐藏控制台窗口#pragma comment(linker, "/subsystem:\"windows\" /entry:\"mainCRTStartup\"")int main(){ const char *pstrImageName = &qu

  • Python OpenCV处理图像之图像像素点操作

    本文实例为大家分享了Python OpenCV图像像素点操作的具体代码,供大家参考,具体内容如下 0x01. 像素 有两种直接操作图片像素点的方法: 第一种办法就是将一张图片看成一个多维的list,例如对于一张图片im,想要操作第四行第四列的像素点就直接 im[3,3] 就可以获取到这个点的RGB值. 第二种就是使用 OpenCV 提供的 Get1D. Get2D 等函数. 推荐使用第一种办法吧,毕竟简单. 0x02. 获取行和列像素 有一下四个函数: cv.GetCol(im, 0): 返回第

  • Python Opencv实现图像轮廓识别功能

    本文实例为大家分享了python opencv识别图像轮廓的具体代码,供大家参考,具体内容如下 要求:用矩形或者圆形框住图片中的云朵(不要求全部框出) 轮廓检测 Opencv-Python接口中使用cv2.findContours()函数来查找检测物体的轮廓. import cv2 img = cv2.imread('cloud.jpg') # 灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 二值化 ret, binary = cv2.th

  • python opencv 图像拼接的实现方法

    初级的图像拼接为将两幅图像简单的粘贴在一起,仅仅是图像几何空间的转移与合成,与图像内容无关.高级图像拼接也叫作基于特征匹配的图像拼接,拼接时消去两幅图像相同的部分,实现拼接合成全景图. 具有相同尺寸的图A和图B含有相同的部分与不同的部分,如图所示:             用基于特征的图像拼接实现后: 设图像高为h,相同部分的宽度为wx 拼接后图像的宽w=wA+wB-wx 因此,可以先构建一个高为h,宽为W*2的空白图像,将左图像向右平移wx,右图像粘贴在右侧.则右图像刚好覆盖左图像中的相同部分

  • python opencv 图像尺寸变换方法

    利用Python OpenCV中的 cv.Resize(源,目标,变换方法)就可以实现变换为想要的尺寸了 源文件:就不用说了 目标:你可以对图像进行倍数的放大和缩小 也可以直接的输入尺寸大小 变换的方法: CV_INTER_NN - 最近邻插值, CV_INTER_LINEAR - 双线性插值 (缺省使用) CV_INTER_AREA - 使用象素关系重采样.当图像缩小时候,该方法可以避免波纹出现.当图像放大时,类似于 CV_INTER_NN 方法.. CV_INTER_CUBIC - 立方插值

随机推荐