python em算法的实现

'''
数据集:伪造数据集(两个高斯分布混合)
数据集长度:1000
------------------------------
运行结果:
----------------------------
the Parameters set is:
alpha0:0.3, mu0:0.7, sigmod0:-2.0, alpha1:0.5, mu1:0.5, sigmod1:1.0
----------------------------
the Parameters predict is:
alpha0:0.4, mu0:0.6, sigmod0:-1.7, alpha1:0.7, mu1:0.7, sigmod1:0.9
----------------------------
'''

import numpy as np
import random
import math
import time

def loadData(mu0, sigma0, mu1, sigma1, alpha0, alpha1):
  '''
  初始化数据集
  这里通过服从高斯分布的随机函数来伪造数据集
  :param mu0: 高斯0的均值
  :param sigma0: 高斯0的方差
  :param mu1: 高斯1的均值
  :param sigma1: 高斯1的方差
  :param alpha0: 高斯0的系数
  :param alpha1: 高斯1的系数
  :return: 混合了两个高斯分布的数据
  '''
  # 定义数据集长度为1000
  length = 1000

  # 初始化第一个高斯分布,生成数据,数据长度为length * alpha系数,以此来
  # 满足alpha的作用
  data0 = np.random.normal(mu0, sigma0, int(length * alpha0))
  # 第二个高斯分布的数据
  data1 = np.random.normal(mu1, sigma1, int(length * alpha1))

  # 初始化总数据集
  # 两个高斯分布的数据混合后会放在该数据集中返回
  dataSet = []
  # 将第一个数据集的内容添加进去
  dataSet.extend(data0)
  # 添加第二个数据集的数据
  dataSet.extend(data1)
  # 对总的数据集进行打乱(其实不打乱也没事,只不过打乱一下直观上让人感觉已经混合了
  # 读者可以将下面这句话屏蔽以后看看效果是否有差别)
  random.shuffle(dataSet)

  #返回伪造好的数据集
  return dataSet

def calcGauss(dataSetArr, mu, sigmod):
  '''
  根据高斯密度函数计算值
  依据:“9.3.1 高斯混合模型” 式9.25
  注:在公式中y是一个实数,但是在EM算法中(见算法9.2的E步),需要对每个j
  都求一次yjk,在本实例中有1000个可观测数据,因此需要计算1000次。考虑到
  在E步时进行1000次高斯计算,程序上比较不简洁,因此这里的y是向量,在numpy
  的exp中如果exp内部值为向量,则对向量中每个值进行exp,输出仍是向量的形式。
  所以使用向量的形式1次计算即可将所有计算结果得出,程序上较为简洁
  :param dataSetArr: 可观测数据集
  :param mu: 均值
  :param sigmod: 方差
  :return: 整个可观测数据集的高斯分布密度(向量形式)
  '''
  # 计算过程就是依据式9.25写的,没有别的花样
  result = (1 / (math.sqrt(2*math.pi)*sigmod**2)) * np.exp(-1 * (dataSetArr-mu) * (dataSetArr-mu) / (2*sigmod**2))
  # 返回结果
  return result

def E_step(dataSetArr, alpha0, mu0, sigmod0, alpha1, mu1, sigmod1):
  '''
  EM算法中的E步
  依据当前模型参数,计算分模型k对观数据y的响应度
  :param dataSetArr: 可观测数据y
  :param alpha0: 高斯模型0的系数
  :param mu0: 高斯模型0的均值
  :param sigmod0: 高斯模型0的方差
  :param alpha1: 高斯模型1的系数
  :param mu1: 高斯模型1的均值
  :param sigmod1: 高斯模型1的方差
  :return: 两个模型各自的响应度
  '''
  # 计算y0的响应度
  # 先计算模型0的响应度的分子
  gamma0 = alpha0 * calcGauss(dataSetArr, mu0, sigmod0)
  # 模型1响应度的分子
  gamma1 = alpha1 * calcGauss(dataSetArr, mu1, sigmod1)

  # 两者相加为E步中的分布
  sum = gamma0 + gamma1
  # 各自相除,得到两个模型的响应度
  gamma0 = gamma0 / sum
  gamma1 = gamma1 / sum

  # 返回两个模型响应度
  return gamma0, gamma1

def M_step(muo, mu1, gamma0, gamma1, dataSetArr):
  # 依据算法9.2计算各个值
  # 这里没什么花样,对照书本公式看看这里就好了
  mu0_new = np.dot(gamma0, dataSetArr) / np.sum(gamma0)
  mu1_new = np.dot(gamma1, dataSetArr) / np.sum(gamma1)

  sigmod0_new = math.sqrt(np.dot(gamma0, (dataSetArr - muo)**2) / np.sum(gamma0))
  sigmod1_new = math.sqrt(np.dot(gamma1, (dataSetArr - mu1)**2) / np.sum(gamma1))

  alpha0_new = np.sum(gamma0) / len(gamma0)
  alpha1_new = np.sum(gamma1) / len(gamma1)

  # 将更新的值返回
  return mu0_new, mu1_new, sigmod0_new, sigmod1_new, alpha0_new, alpha1_new

def EM_Train(dataSetList, iter=500):
  '''
  根据EM算法进行参数估计
  算法依据“9.3.2 高斯混合模型参数估计的EM算法” 算法9.2
  :param dataSetList:数据集(可观测数据)
  :param iter: 迭代次数
  :return: 估计的参数
  '''
  # 将可观测数据y转换为数组形式,主要是为了方便后续运算
  dataSetArr = np.array(dataSetList)

  # 步骤1:对参数取初值,开始迭代
  alpha0 = 0.5
  mu0 = 0
  sigmod0 = 1
  alpha1 = 0.5
  mu1 = 1
  sigmod1 = 1

  # 开始迭代
  step = 0
  while (step < iter):
    # 每次进入一次迭代后迭代次数加1
    step += 1
    # 步骤2:E步:依据当前模型参数,计算分模型k对观测数据y的响应度
    gamma0, gamma1 = E_step(dataSetArr, alpha0, mu0, sigmod0, alpha1, mu1, sigmod1)
    # 步骤3:M步
    mu0, mu1, sigmod0, sigmod1, alpha0, alpha1 = M_step(mu0, mu1, gamma0, gamma1, dataSetArr)

  # 迭代结束后将更新后的各参数返回
  return alpha0, mu0, sigmod0, alpha1, mu1, sigmod1

if __name__ == '__main__':
  start = time.time()

  # 设置两个高斯模型进行混合,这里是初始化两个模型各自的参数
  # 见“9.3 EM算法在高斯混合模型学习中的应用”
  # alpha是“9.3.1 高斯混合模型” 定义9.2中的系数α
  # mu0是均值μ
  # sigmod是方差σ
  # 在设置上两个alpha的和必须为1,其他没有什么具体要求,符合高斯定义就可以
  alpha0 = 0.3 # 系数α
  mu0 = -2 # 均值μ
  sigmod0 = 0.5 # 方差σ

  alpha1 = 0.7 # 系数α
  mu1 = 0.5 # 均值μ
  sigmod1 = 1 # 方差σ

  # 初始化数据集
  dataSetList = loadData(mu0, sigmod0, mu1, sigmod1, alpha0, alpha1)

  #打印设置的参数
  print('---------------------------')
  print('the Parameters set is:')
  print('alpha0:%.1f, mu0:%.1f, sigmod0:%.1f, alpha1:%.1f, mu1:%.1f, sigmod1:%.1f' % (
    alpha0, alpha1, mu0, mu1, sigmod0, sigmod1
  ))

  # 开始EM算法,进行参数估计
  alpha0, mu0, sigmod0, alpha1, mu1, sigmod1 = EM_Train(dataSetList)

  # 打印参数预测结果
  print('----------------------------')
  print('the Parameters predict is:')
  print('alpha0:%.1f, mu0:%.1f, sigmod0:%.1f, alpha1:%.1f, mu1:%.1f, sigmod1:%.1f' % (
    alpha0, alpha1, mu0, mu1, sigmod0, sigmod1
  ))

  # 打印时间
  print('----------------------------')
  print('time span:', time.time() - start)

以上就是python em算法的实现的详细内容,更多关于python em算法的资料请关注我们其它相关文章!

(0)

相关推荐

  • python 机器学习之实现朴素贝叶斯算法的示例

    特点 这是分类算法贝叶斯算法的较为简单的一种,整个贝叶斯分类算法的核心就是在求解贝叶斯方程P(y|x)=[P(x|y)P(y)]/P(x) 而朴素贝叶斯算法就是在牺牲一定准确率的情况下强制特征x满足独立条件,求解P(x|y)就更为方便了 但基本上现实生活中,没有任何关系的两个特征几乎是不存在的,故朴素贝叶斯不适合那些关系密切的特征 from collections import defaultdict import numpy as np from sklearn.datasets import

  • EM算法的python实现的方法步骤

    前言:前一篇文章大概说了EM算法的整个理解以及一些相关的公式神马的,那些数学公式啥的看完真的是忘完了,那就来用代码记忆记忆吧!接下来将会对python版本的EM算法进行一些分析. EM的python实现和解析 引入问题(双硬币问题) 假设有两枚硬币A.B,以相同的概率随机选择一个硬币,进行如下的抛硬币实验:共做5次实验,每次实验独立的抛十次,结果如图中a所示,例如某次实验产生了H.T.T.T.H.H.T.H.T.H,H代表正面朝上. 假设试验数据记录员可能是实习生,业务不一定熟悉,造成a和b两种

  • python实现人工蜂群算法

    ABSIndividual.py import numpy as np import ObjFunction class ABSIndividual: ''' individual of artificial bee swarm algorithm ''' def __init__(self, vardim, bound): ''' vardim: dimension of variables bound: boundaries of variables ''' self.vardim = va

  • python 密码学示例——理解哈希(Hash)算法

    Hash 是密码学安全性的基石,它引入了单向函数(one-way function)和指纹(fingerprint)的概念.即: 对于任意输入,都可以产生相同的.唯一的输出值 输出值中不包含输入值的任何线索 一.保密性(confidentiality)与完整性(integrity) 简单来说,信息的保密性确保除授权人员以外的任何人都无法读取该消息,信息的完整性则确保除授权人员以外的任何人都无法修改该消息. 很多时候一段加密的消息无法被他人读取和理解(保密性),并不意味着该密文不会在传播过程中被截

  • Kmeans均值聚类算法原理以及Python如何实现

    第一步.随机生成质心 由于这是一个无监督学习的算法,因此我们首先在一个二维的坐标轴下随机给定一堆点,并随即给定两个质心,我们这个算法的目的就是将这一堆点根据它们自身的坐标特征分为两类,因此选取了两个质心,什么时候这一堆点能够根据这两个质心分为两堆就对了.如下图所示: 第二步.根据距离进行分类 红色和蓝色的点代表了我们随机选取的质心.既然我们要让这一堆点的分为两堆,且让分好的每一堆点离其质心最近的话,我们首先先求出每一个点离质心的距离.假如说有一个点离红色的质心比例蓝色的质心更近,那么我们则将这个

  • python实现暗通道去雾算法的示例

    何凯明博士的去雾文章和算法实现已经漫天飞了,我今天也就不啰里啰唆,直接给出自己python实现的完整版本,全部才60多行代码,简单易懂,并有简要注释,去雾效果也很不错. 在这个python版本中,计算量最大的就是最小值滤波,纯python写的,慢,可以进一步使用C优化,其他部分都是使用numpy和opencv的现成东东,效率还行. import cv2 import numpy as np def zmMinFilterGray(src, r=7): '''最小值滤波,r是滤波器半径''' ''

  • python 如何实现遗传算法

    1.基本概念 遗传算法(GA)是最早由美国Holland教授提出的一种基于自然界的"适者生存,优胜劣汰"基本法则的智能搜索算法.该法则很好地诠释了生物进化的自然选择过程.遗传算法也是借鉴该基本法则,通过基于种群的思想,将问题的解通过编码的方式转化为种群中的个体,并让这些个体不断地通过选择.交叉和变异算子模拟生物的进化过程,然后利用"优胜劣汰"法则选择种群中适应性较强的个体构成子种群,然后让子种群重复类似的进化过程,直到找到问题的最优解或者到达一定的进化(运算)时间.

  • 详解python 支持向量机(SVM)算法

    相比于逻辑回归,在很多情况下,SVM算法能够对数据计算从而产生更好的精度.而传统的SVM只能适用于二分类操作,不过却可以通过核技巧(核函数),使得SVM可以应用于多分类的任务中. 本篇文章只是介绍SVM的原理以及核技巧究竟是怎么一回事,最后会介绍sklearn svm各个参数作用和一个demo实战的内容,尽量通俗易懂.至于公式推导方面,网上关于这方面的文章太多了,这里就不多进行展开了~ 1.SVM简介 支持向量机,能在N维平面中,找到最明显得对数据进行分类的一个超平面!看下面这幅图: 如上图中,

  • Python实现迪杰斯特拉算法过程解析

    一. 迪杰斯特拉算法思想 Dijkstra算法主要针对的是有向图的单元最短路径问题,且不能出现权值为负的情况!Dijkstra算法类似于贪心算法,其应用根本在于最短路径的最优子结构性质. 最短路径的最优子结构性质: 如果P(i,j)={Vi-Vk-Vs-Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必定是从k到s的最短路径. 证明: 假设P(i,j)={Vi-Vk-Vs-Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,j)

  • Python 实现国产SM3加密算法的示例代码

    SM3是中华人民共和国政府采用的一种密码散列函数标准,由国家密码管理局于2010年12月17日发布.主要用于报告文件数字签名及验证. Python3代码如下: from math import ceil ############################################################################## # # 国产SM3加密算法 # #####################################################

随机推荐