Python如何加载模型并查看网络
目录
- 加载模型并查看网络
- 打开终端
- 神经网络_模型的保存,模型的加载
- 模型的保存(torch.save)
- 模型的加载(torch.load)
加载模型并查看网络
加载模型,以vgg19为例。
打开终端
> python Python 3.7.2 (tags/v3.7.2:9a3ffc0492, Dec 23 2018, 23:09:28) [MSC v.1916 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or "license" for more information. >>> from torchvision import models >>> model = models.vgg19(pretrained=True) #此时如果是第一次加载会开始下载模型的pth文件 >>> print(model.model)
结果:
VGG(
(features): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU(inplace)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): ReLU(inplace)
(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(6): ReLU(inplace)
(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(8): ReLU(inplace)
(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU(inplace)
(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(13): ReLU(inplace)
(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(15): ReLU(inplace)
(16): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(17): ReLU(inplace)
(18): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(19): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(20): ReLU(inplace)
(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(22): ReLU(inplace)
(23): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(24): ReLU(inplace)
(25): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(26): ReLU(inplace)
(27): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(29): ReLU(inplace)
(30): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(31): ReLU(inplace)
(32): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(33): ReLU(inplace)
(34): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(35): ReLU(inplace)
(36): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
(classifier): Sequential(
(0): Linear(in_features=25088, out_features=4096, bias=True)
(1): ReLU(inplace)
(2): Dropout(p=0.5)
(3): Linear(in_features=4096, out_features=4096, bias=True)
(4): ReLU(inplace)
(5): Dropout(p=0.5)
(6): Linear(in_features=4096, out_features=1000, bias=True)
)
)
注意,直接打印模型是没有办法看到模型结构的,只能看到带模型参数的pth文件内容;需要打印model.model才可以看到模型本身。
神经网络_模型的保存,模型的加载
模型的保存(torch.save)
方式1(模型结构+模型参数)
参数:保存位置
# 创建模型 vgg16 = torchvision.models.vgg16(pretrained=False) # 保存方式1——模型结构+模型参数 torch.save(vgg16, "vgg16_method1.pth")
方式2(模型参数)
# 保存方式2 模型参数(官方推荐)。保存成字典,只保存网络模型中的一些参数 torch.save(vgg16.state_dict(), "vgg16_method2.pth")
模型的加载(torch.load)
对应保存方式1
参数:模型路径
# 方式1 --》 保存方式1 model1 = torch.load("vgg16_method1.pth")
对应保存方式2
vgg16.load_state_dict("vgg16_method2.pth")
输出为字典形式。若要回复网络,采用以下形式:
model2 = torch.load("vgg16_method2.pth") #输出是字典形式 # 恢复网络结构 vgg16 = torchvision.models.vgg16(pretrained=False) vgg16.load_state_dict(model2)
方式1存储,加载时需注意事项
新建自己的网络:
class test(nn.Module): def __init__(self): super(lh, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=3) def forward(self, x): x = self.conv1(x) return x
保存自己的网络:
Test = test() # 保存自己定义的网络 torch.save(Test, "Test_method1.pth")
加载自己的网络:
model3 = torch.load("Test_method1.pth")
会报错!!!!!!
解决办法(需要注意):
将定义的网络复制到加载的python文件中:
class test(nn.Module): def __init__(self): super(test, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=3) def forward(self, x): x = self.conv1(x) return x model3 = torch.load("Test_method1.pth")
以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。