OpenCV图像处理基本操作详解

本文实例为大家分享了OpenCV图像处理基本操作的具体代码,供大家参考,具体内容如下

图像的读取

cv2.IMREAD_COLOR 彩色图像
cv2.IMREAD_GRAYSCALE 灰色图像

import cv2#opencv 的读取格式是BGR
import matplotlib.pyplot as plt
import numpy as np

#图像的显示,也可以创建多个窗口
img=cv2.imread('tu.jpg')
cv2.imshow('name',img)
#等待时间毫秒级,0表示任意键终止
cv2.waitKey(0)
cv2.destroyAllWindows()

#颜色通道提取
b,g,r=cv2.split(img)
print(b)
print(b.shape)
#颜色通道融合
img=cv2.merge((b,g,r))
print(img.shape)
#可以将其余两通道全部置零,保留一个颜色通道
cur_img=img.copy()
cur_img[:,:,0]=0#BRG
cur_img[:,:,1]=0
cv2.imshow('cur_img',cur_img)

边界填充

BORDER_REPLICATE:复制法,也就是复制最边缘像素
BORDER_REFLECT:反射法,对感兴趣的图片中的像素的两边进行复制:cba|abc|cba
BORDER_REFLECT_101:反射法,对称,cb|abcd|cda
BORDER_WRAP:外包装法abc|abc|abc
BORDER_CONSTANT:常量法常数填充

top_size,bottom_size,left_size,right_size=(50,50,50,50)
replicate=cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType=cv2.BORDER_REPLICATE)
reflect=cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType=cv2.BORDER_REFLECT)
reflect101=cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType=cv2.BORDER_REFLECT_101)
wrap=cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType=cv2.BORDER_WRAP)
constant=cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType=cv2.BORDER_CONSTANT,value=0)

#将图片画出对比
plt.subplot(231),plt.imshow(img,'gray'),plt.title('GRIGNAAL')
plt.subplot(232),plt.imshow(replicate,'gray'),plt.title('replicate')
plt.subplot(233),plt.imshow(reflect,'gray'),plt.title('reflect')
plt.subplot(234),plt.imshow(wrap,'gray'),plt.title('wrap')
plt.subplot(235),plt.imshow(constant,'gray'),plt.title('constant')
plt.show()

视频的读取

#视频的读取 cv2.VideoCapture 可以捕获摄像头,用数字来捕获不同设备,列如0,1 如果是视频文件直接指定好路径即可
vc=cv2.VideoCapture('IMG_1972.mp4')
#检测是否打开正确
if vc.isOpened():
 open,frame=vc.read()
else:
 open=False

while open:#一帧一帧的处理为灰色
 ret,frame=vc.read()
 if frame is None:
 break
 if ret==True:
 gray=cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) #一帧一帧的处理为灰色
 cv2.imshow('result',gray)
 if cv2.waitKey(100) & 0xFF==27:
  break
vc.release()
cv2.destroyAllWindows() 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 详解python opencv、scikit-image和PIL图像处理库比较

    进行深度学习时,对图像进行预处理的过程是非常重要的,使用pytorch或者TensorFlow时需要对图像进行预处理以及展示来观看处理效果,因此对python中的图像处理框架进行图像的读取和基本变换的掌握是必要的,接下来python中几个基本的图像处理库进行纵向对比. 项目地址:https://github.com/Oldpan/Pytorch-Learn/tree/master/Image-Processing 比较的图像处理框架: PIL scikit-image opencv-python

  • 基于python的opencv图像处理实现对斑马线的检测示例

    基本思路 斑马线检测通过opencv图像处理来进行灰度值转换.高斯滤波去噪.阈值处理.腐蚀和膨胀后对图像进行轮廓检测,通过判断车辆和行人的位置,以及他们之间的距离信息,当车速到超过一定阈值时并且与行人距离较近时,则会被判定车辆为未礼让行人. 结果示例 实验流程 先通过视频截取一张图片来进行测试,如果结果满意之后再嵌套到视频中,从而达到想要的效果. 1.预处理(灰度值转换.高斯滤波去噪.阈值处理.腐蚀和膨胀)> 根据自己的需求来修改一些值 #灰度值转换 imgGray = cv2.cvtColor

  • Opencv图像处理之轮廓外背景颜色改变

    本文实例为大家分享了Opencv轮廓外背景颜色改变的具体代码,供大家参考,具体内容如下 自行学习弄得简单代码,使用了图像中的轮廓发现以及提取,再绘制出来,改变轮廓外的像素 首先,头文件,写的比较多,没用的可以自己去除 #include <opencv2/core/core.hpp> #include<opencv2/highgui/highgui.hpp> #include"opencv2/imgproc/imgproc.hpp" #include <io

  • Python+OpenCV图像处理——实现直线检测

    简介: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等).最基本的霍夫变换是从黑白图像中检测直线(线段). 2.Hough变换的原理是将特定图形上的点变换到一组参数空间上,根据参数空间点的累计结果找到一个极大值对应的解,那么这个解就对应着要寻找的几何形状的参数(比如说直线,那么就会得到直线的斜率k与常熟b,圆就会得到圆心与半径等等) 3.霍夫线变

  • python opencv图像处理(素描、怀旧、光照、流年、滤镜 原理及实现)

    图像素描特效 图像素描特效主要经过以下几个步骤: 调用cv.cvtColor()函数将彩色图像灰度化处理: 通过cv.GaussianBlur()函数实现高斯滤波降噪: 边缘检测采用Canny算子实现: 最后通过cv.threshold()反二进制阈值化处理实现素描特效. #coding:utf-8 import cv2 as cv import numpy as np #读取原始图像 img = cv.imread('d:/paojie.png') #图像灰度处理 gray = cv.cvtC

  • Opencv图像处理:如何判断图片里某个颜色值占的比例

    一.功能 这里的需求是,判断摄像头有没有被物体遮挡.这里只考虑用手遮挡---->判断黑色颜色的范围. 二.使用OpenCV的Mat格式图片遍历图片 下面代码里,传入的图片的尺寸是640*480,判断黑色范围. /* 在图片里查找指定颜色的比例 */ int Widget::Mat_color_Find(QImage qimage) { Mat image = QImage2cvMat(qimage);//将图片加载进来 int num = 0;//记录颜色的像素点 float rate;//要计

  • Python+OpenCV图像处理——图像二值化的实现

    简介:图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程. 普通图像二值化 代码如下: import cv2 as cv import numpy as np #全局阈值 def threshold_demo(image): gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY) #把输入图像灰度化 #直接阈值化是对输入的单通道矩阵逐像素进行阈值分割. ret, binary = cv.threshold(gray

  • Python+OpenCV图像处理——打印图片属性、设置存储路径、调用摄像头

    一. 打印图片属性.设置图片存储路径 代码如下: #打印图片的属性.保存图片位置 import cv2 as cv import numpy as np #numpy是一个开源的Python科学计算库 def get_image_info(image): print(type(image)) #type() 函数如果只有第一个参数则返回对象的类型 在这里函数显示图片类型为 numpy类型的数组 print(image.shape) #图像矩阵的shape属性表示图像的大小,shape会返回tup

  • Python Opencv图像处理基本操作代码详解

    1.图像读取 使用cv2.imread(filepath,flags)读入图像 filepath: 读入图像完整路径(绝对路径,相对路径) flags: 读入图像标志 cv2.IMREAD_COLOR:默认参数,读入一副彩色图,忽略alpha通道:可以通过1指定 cv2.IMREAD_GRAYSCALE:读入灰度图片 也通过0指定 cv2.IMREAD_UNCHANGED:读入完整图片,包括alpha通道 import cv2 img1 = cv2.imread('C:/star.png',1)

  • Python+OpenCV图像处理——实现轮廓发现

    简介:轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法,所以边缘提取的阈值选定会影响最终轮廓发现结果. 代码如下: import cv2 as cv import numpy as np def contours_demo(image): dst = cv.GaussianBlur(image, (3, 3), 0) #高斯模糊去噪 gray = cv.cvtColor(dst, cv.COLOR_RGB2GRAY) ret, binary = cv.threshold(gray, 0, 25

  • OpenCV图像处理之常见的图像灰度变换

    1.灰度线性变换 图像的灰度线性变换是图像灰度变换的一种,图像的灰度变换通过建立灰度映射来调整源图像的灰度,从而达到图像增强的目的.灰度映射通常是用灰度变换曲线来进行表示.通常来说,它是将图像的像素值通过指定的线性函数进行变换,以此来增强或者来减弱图像的灰度,灰度线性变换的函数就是常见的线性函数. g(x, y) = k · f(x, y) + d 设源图像的灰度值为x,则进行灰度线性变换后的灰度值为y = kx + b (0<=y<=255),下面分别来讨论k的取值变化时线性变换的不同效果

  • Opencv图像处理之图像增加边框

    理论 在本教程中,我们将简要介绍两种为图像定义额外填充(边框)的方法: BORDER_CONSTANT:用恒定值(即黑色或0)填充图像 BORDER_REPLICATE:原始边缘的行或列复制到额外边框. 代码 程序的运行流程 加载一张图片 让用户选择输入图像中使用哪种填充. 有两种选择: 1.常量值边框:为整个边框应用常量值的填充. 该值将每0.5秒随机更新一次. 2.复制边框:将从原始图像边缘的像素值复制边框. 当用户按下'ESC'时程序结束 原始代码 #include "opencv2/im

  • Python+OpenCV图像处理—— 色彩空间转换

    一.色彩空间的转换 代码如下: #色彩空间转换 import cv2 as cv def color_space_demo(img): gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) #RGB转换为GRAY 这里的GRAY是单通道的 cv.imshow("gray", gray) hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV) #RGB转换为HSV cv.imshow("hsv", hsv) y

随机推荐