pytorch使用tensorboardX进行loss可视化实例

最近pytorch出了visdom,也没有怎么去研究它,主要是觉得tensorboardX已经够用,而且用起来也十分的简单

pip install tensorboardX

然后在代码里导入

from tensorboardX import SummaryWriter

然后声明一下自己将loss写到哪个路径下面

writer = SummaryWriter('./log')

然后就可以愉快的写loss到你得这个writer了

niter = epoch * len(train_loader) + i
writer.add_scalars(args.result_path + 'Train_val_loss', {args.result_path+'train_loss': loss.data.item()}, niter)

其中,add_scalars是将不同得变量添加到同一个图下,图的名称是add_scalars得第一个变量

然后为这个图中不同得曲线添加不同得标题,上面这一行代码

writer.add_scalars(args.result_path + 'Train_val_loss', {args.result_path+'train_loss': loss.data.item()}, niter)

后面得dict中得key是曲线的名称,后面的value是对应得append的值,再后面得niter是x坐标,这句话得意思就相当于,对于图名称为args.result_path + 'Train_val_loss'的图,对曲线名称为args.result_path+'train_loss'添加新的点,这个点为(niter, loss.data.item())

同样的,我可以画出val的loss

niter = epoch * len(train_loader) + i
writer.add_scalars(args.result_path + 'Train_val_loss', {args.result_path+'val_loss': mean_loss}, niter)

writer保存到了我们刚刚声明的路径'./log‘下面,然后终端启动tensorboard

tensorboard --logdir ./log --port 8890

不会用得进行tensorboard --help即可

然后进行端口映射就行了

实际上在使用的过程中,我发现了,如果你要保存的结果在各个子文件夹内,然后你在父文件夹运行tensorboard,就可以在浏览器看到各种结果,而不必再进行不同的端口映射

比如上面这个,我的resnet文件夹下有不同的我writer写入的文件,在父目录下启动tensorboard之后,

没毛病!

补充拓展:pytorch产生loss的计算图代码

废话不多说,直接上代码

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
  def __init__(self):
    super(Net,self).__init__()
    self.conv1=nn.Conv2d(1,6,5)
    self.conv2=nn.Conv2d(6,16,5)
    self.fc1=nn.Linear(16*5*5,120)
    self.fc2=nn.Linear(120,84)
    self.fc3=nn.Linear(84,10)
  def forward(self,x):
    x=F.max_pool2d(F.relu(self.conv1(x)),(2,2))
    x=F.max_pool2d(F.relu(self.conv2(x)),2)
    x=x.view(x.size()[0],-1)
    print(x)
    x=F.relu(self.fc1(x))
    x=F.relu(self.fc2(x))
    x=self.fc3(x)
    return x
net=Net()
#params=list(net.parameters())
#for name,parameters in net.named_parameters():
#  print(name,':',parameters.size())
#print(len(params))
#print(net)
input=Variable(t.randn(1,1,32,32))
output=net(input)
#out.size()
target=Variable(t.arange(0,10))
criterion=nn.MSELoss()
loss=criterion(output,target)
loss.grad_fn

以上这篇pytorch使用tensorboardX进行loss可视化实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch实现seq2seq时对loss进行mask的方式

    如何对loss进行mask pytorch官方教程中有一个Chatbot教程,就是利用seq2seq和注意力机制实现的,感觉和机器翻译没什么不同啊,如果对话中一句话有下一句,那么就把这一对句子加入模型进行训练.其中在训练阶段,损失函数通常需要进行mask操作,因为一个batch中句子的长度通常是不一样的,一个batch中不足长度的位置需要进行填充(pad)补0,最后生成句子计算loss时需要忽略那些原本是pad的位置的值,即只保留mask中值为1位置的值,忽略值为0位置的值,具体演示如下: im

  • pytorch中交叉熵损失(nn.CrossEntropyLoss())的计算过程详解

    公式 首先需要了解CrossEntropyLoss的计算过程,交叉熵的函数是这样的: 其中,其中yi表示真实的分类结果.这里只给出公式,关于CrossEntropyLoss的其他详细细节请参照其他博文. 测试代码(一维) import torch import torch.nn as nn import math criterion = nn.CrossEntropyLoss() output = torch.randn(1, 5, requires_grad=True) label = tor

  • pytorch使用tensorboardX进行loss可视化实例

    最近pytorch出了visdom,也没有怎么去研究它,主要是觉得tensorboardX已经够用,而且用起来也十分的简单 pip install tensorboardX 然后在代码里导入 from tensorboardX import SummaryWriter 然后声明一下自己将loss写到哪个路径下面 writer = SummaryWriter('./log') 然后就可以愉快的写loss到你得这个writer了 niter = epoch * len(train_loader) +

  • pytorch绘制并显示loss曲线和acc曲线,LeNet5识别图像准确率

    我用的是Anaconda3 ,用spyder编写pytorch的代码,在Anaconda3中新建了一个pytorch的虚拟环境(虚拟环境的名字就叫pytorch). 以下内容仅供参考哦~~ 1.首先打开Anaconda Prompt,然后输入activate pytorch,进入pytorch. 2.输入pip install tensorboardX,安装完成后,输入python,用from tensorboardX import SummaryWriter检验是否安装成功.如下图所示: 3.

  • keras模型可视化,层可视化及kernel可视化实例

    keras模型可视化: model: model = Sequential() # input: 100x100 images with 3 channels -> (100, 100, 3) tensors. # this applies 32 convolution filters of size 3x3 each. model.add(ZeroPadding2D((1,1), input_shape=(38, 38, 1))) model.add(Conv2D(32, (3, 3), ac

  • keras训练曲线,混淆矩阵,CNN层输出可视化实例

    训练曲线 def show_train_history(train_history, train_metrics, validation_metrics): plt.plot(train_history.history[train_metrics]) plt.plot(train_history.history[validation_metrics]) plt.title('Train History') plt.ylabel(train_metrics) plt.xlabel('Epoch')

  • 在Pytorch中使用Mask R-CNN进行实例分割操作

    在这篇文章中,我们将讨论mask R-CNN背后的一些理论,以及如何在PyTorch中使用预训练的mask R-CNN模型. 1.语义分割.目标检测和实例分割 之前已经介绍过: 1.语义分割:在语义分割中,我们分配一个类标签(例如.狗.猫.人.背景等)对图像中的每个像素. 2.目标检测:在目标检测中,我们将类标签分配给包含对象的包围框. 一个非常自然的想法是把两者结合起来.我们只想在一个对象周围识别一个包围框,并且找到包围框中的哪些像素属于对象. 换句话说,我们想要一个掩码,它指示(使用颜色或灰

  • Pytorch Mac GPU 训练与测评实例

    目录 正文 加速原理 环境配置 跑一个MNIST 跑一下VAE模型 一个愿景 正文 Pytorch的官方博客发了Apple M1 芯片 GPU加速的文章,这是我期待了很久的功能,因此很兴奋,立马进行测试,结论是在MNIST上,速度与P100差不多,相比CPU提速1.7倍.当然这只是一个最简单的例子,不能反映大部分情况.这里详细记录操作的一步步流程,如果你也感兴趣,不妨自己上手一试. 加速原理 苹果有自己的一套GPU实现API Metal,而Pytorch此次的加速就是基于Metal,具体来说,使

  • pytorch numpy list类型之间的相互转换实例

    如下所示: import torch from torch.autograd import Variable import numpy as np ''' pytorch中Variable与torch.Tensor类型的相互转换 ''' # 1.torch.Tensor转换成Variablea=torch.randn((5,3)) b=Variable(a) print('a',a.type(),a.shape) print('b',type(b),b.shape) # 2.Variable转换

  • pytorch使用指定GPU训练的实例

    本文适合多GPU的机器,并且每个用户需要单独使用GPU训练. 虽然pytorch提供了指定gpu的几种方式,但是使用不当的话会遇到out of memory的问题,主要是因为pytorch会在第0块gpu上初始化,并且会占用一定空间的显存.这种情况下,经常会出现指定的gpu明明是空闲的,但是因为第0块gpu被占满而无法运行,一直报out of memory错误. 解决方案如下: 指定环境变量,屏蔽第0块gpu CUDA_VISIBLE_DEVICES = 1 main.py 这句话表示只有第1块

  • Python Tkinter模块 GUI 可视化实例

    我就废话不多说了,直接上代码: coding:utf-8 #自带的Tkinter模块 from Tkinter import * from ScrolledText import ScrolledText #gui框 root = Tk() root.title('视频多线程') #窗口坐标和大小 +代表调整坐标 x代表调整大小 root.geometry('500x500+200+100') #滚动条 text = ScrolledText(root,font=('微软雅黑',10)) #实现

  • Pytorch的mean和std调查实例

    如下所示: # coding: utf-8 from __future__ import print_function import copy import click import cv2 import numpy as np import torch from torch.autograd import Variable from torchvision import models, transforms import matplotlib.pyplot as plt import load

随机推荐