Python使用matplotlib实现基础绘图功能示例

本文实例讲述了Python使用matplotlib实现基础绘图功能。分享给大家供大家参考,具体如下:

一个简单的例子

# -*- coding:utf-8 -*-
#!python3
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0,10,101)  #设置起始及终点,以及点的数量
y = np.sin(x)        #调用numpy库的sin函数
z = np.cos(x**2)
plt.figure(figsize=(8,6))  #设置图像的大小
plt.plot(x,y,label="$y=sin(x)$",color = "red",linewidth=2)      #设置图像属性,$表示将公式格式化
plt.plot(x,z,label="$y=cos(x**2)$")
plt.xlabel("Times/s")    #设置图像的横纵坐标的名称及单位
plt.ylabel("Volt/v")
plt.title("Demo")
plt.ylim(-1.2,1.2) #设置y的范围
plt.legend()
plt.show()         #显示图像

运行以上程序,得如下图所示的曲线:

plot函数的调用方式很灵活,

plt.plot(x,y,label="$y=sin(x)$",color = "red",linewidth=2)将x,y数组传递给plot之后,用关键字参数指定各种属性:

  • label : 给所绘制的曲线一个名字,此名字在图示(legend)中显示。只要在字符串前后添加”$”符号,matplotlib就会使用其内嵌的latex引擎绘制的数学公式。
  • color : 指定曲线的颜色
  • linewidth : 指定曲线的宽度
  • xlabel: 设置x轴的文字
  • ylabel: 设置y轴的文字
  • title:设置图表标题
  • ylim:设置y轴的范围
  • legend:显示图示
  • show():显示所有图像

绘制多轴图

可以理解为在一个绘图区域绘制多个子图。调用函数为subplot(numRows, numCols, plotNum)

subplot将整个绘图区域等分为numRows行 * numCols列个子区域,然后按照从左到右,从上到下的顺序对每个子区域进行编号,左上的子区域的编号为1。如果numRows,numCols和plotNum这三个数都小于10的话,可以把它们缩写为一个整数,例如subplot(323)和subplot(3,2,3)是相同的。subplot在plotNum指定的区域中创建一个轴对象。如果新创建的轴和之前创建的轴重叠的话,之前的轴将被删除。

例如以下程序可以将绘图空间分成颜色不同的六份:

# -*- coding:utf-8 -*-
#!python3
import matplotlib.pyplot as plt
for idx, color in enumerate("rgbyck"):
  plt.subplot(320+idx+1, axisbg=color)
plt.show()

运行效果:

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • python使用matplotlib画饼状图

    本文实例为大家分享了python使用matplotlib画饼状图的具体代码,供大家参考,具体内容如下 代码与详细注释 from matplotlib import pyplot as plt #调节图形大小,宽,高 plt.figure(figsize=(6,9)) #定义饼状图的标签,标签是列表 labels = [u'第一部分',u'第二部分',u'第三部分'] #每个标签占多大,会自动去算百分比 sizes = [60,30,10] colors = ['red','yellowgreen

  • python使用Matplotlib画饼图

    本文实例为大家分享了Android九宫格图片展示的具体代码,供大家参考,具体内容如下 函数参数 plt.pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=None, radius=None, counterclock=True, wedgeprops=None, textprops=None, cente

  • python使用Matplotlib画条形图

    本文实例为大家分享了python使用Matplotlib画条形图的具体代码,供大家参考,具体内容如下 数据 中国的四个直辖市分别为北京市.上海市.天津市和重庆市,其2017年上半年的GDP分别为12406.8亿.13908.57亿.9386.87亿.9143.64亿. 代码 # encoding:utf-8 import matplotlib.pyplot as plt # 构建数据 GDP = [12406.8,13908.57,9386.87,9143.64] # 中文乱码的处理 plt.r

  • Python数据分析matplotlib设置多个子图的间距方法

    注意,要看懂这里,必须具备简单的Python数据分析知识,必须知道matplotlib的简单使用! 例1: plt.subplot(221) # 第一行的左图 plt.subplot(222) # 第一行的右图 plt.subplot(212) # 第二整行 plt.title('xxx') plt.tight_layout() #设置默认的间距 例2: for i in range(25): plt.subplot(5,5,i+1) plt.tight_layout() 例3: # 设定画图板

  • Python通过matplotlib画双层饼图及环形图简单示例

    (1) 饼图(pie),即在一个圆圈内分成几块,显示不同数据系列的占比大小,这也是我们在日常数据的图形展示中最常用的图形之一. 在python中常用matplotlib的pie来绘制,基本命令如下所示(python3.X版本): vals = [1, 2, 3, 4]#创建数据系列 fig, ax = plt.subplots()#创建子图 labels = 'A', 'B', 'C', 'D' colors = ['yellowgreen', 'gold', 'lightskyblue', '

  • python利用matplotlib库绘制饼图的方法示例

    介绍 matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图.而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中. 它的文档相当完备,并且 Gallery页面 中有上百幅缩略图,打开之后都有源程序.因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定. matplotlib的安装方法可以点击这里 这篇文章给大家主要介绍了python用matplotlib绘制饼图的方法,话不多说,下面来看代码

  • python+matplotlib绘制饼图散点图实例代码

    本文是从matplotlib官网上摘录下来的一个实例,实现的功能是Python+matplotlib绘制自定义饼图作为散点图的标记,具体如下. 首先看下演示效果 实例代码: import numpy as np import matplotlib.pyplot as plt # first define the ratios r1 = 0.2 # 20% r2 = r1 + 0.4 # 40% # define some sizes of the scatter marker sizes = n

  • Python使用matplotlib绘制三维图形示例

    本文实例讲述了Python使用matplotlib绘制三维图形.分享给大家供大家参考,具体如下: 用二维泡泡图表示三维数据 泡泡的坐标2维,泡泡的大小三维,使用到的函数 plt.scatter(P[:,0], P[:,1], s=S, lw = 1.5, edgecolors = C, facecolors='None') 其中P[:,0], P[:,1]为泡泡的坐标数据,s为泡泡的大小,lw为泡泡的边线宽度,edgecolors为边线颜色,facecolors为填充颜色 代码及注释 # -*-

  • Python使用matplotlib绘制随机漫步图

    本文我们来做一个简单的随机漫步数据图,进一步了解matplotlib的使用, 使用Python生成随机漫步数据,再使用matplotlib绘制出来, 随机漫步是这样行走得到的路径: 每次行走都完全是随机的,没有明确的方向,结果是由一系列随机决策决定的. 创建一个RandomWalk雷,随机的选择前进的方向,一共有三个属性,一个是存储随机漫步次数的变量,其他两个是列表,分别存储随机漫步经过的每个点的x和y坐标 下面是代码 from random import choice class Random

  • python使用matplotlib库生成随机漫步图

    本教程使用python来生成随机漫步数据,再使用matplotlib将数据呈现出来 开发环境 操作系统: Windows10 IDE: Pycharm 2017.1.3 Python版本: Python3.6 Python第三方库:matplotlib 开始实战 1. 创建RandomWalk()类 为了模拟随机漫步,我们将创建一个名为RandomWalk的类, 它随机地选择方向. from random import choice class RandomWalk(): ""&quo

随机推荐