Python大数据之从网页上爬取数据的方法详解

本文实例讲述了Python大数据之从网页上爬取数据的方法。分享给大家供大家参考,具体如下:

myspider.py  :

#!/usr/bin/python
# -*- coding:utf-8 -*-
from scrapy.spiders import Spider
from lxml import etree
from jredu.items import JreduItem
class JreduSpider(Spider):
  name = 'tt' #爬虫的名字,必须的,唯一的
  allowed_domains = ['sohu.com']
  start_urls = [
    'http://www.sohu.com'
  ]
  def parse(self, response):
    content = response.body.decode('utf-8')
    dom = etree.HTML(content)
    for ul in dom.xpath("//div[@class='focus-news-box']/div[@class='list16']/ul"):
      lis = ul.xpath("./li")
      for li in lis:
        item = JreduItem() #定义对象
        if ul.index(li) == 0:
          strong = li.xpath("./a/strong/text()")
          li.xpath("./a/@href")
          item['title']= strong[0]
          item['href'] = li.xpath("./a/@href")[0]
        else:
          la = li.xpath("./a[last()]/text()")
          item['title'] = la[0]
          item['href'] = li.xpath("./a[last()]/href")[0]
        yield item

items.py    :

# -*- coding: utf-8 -*-
# Define here the models for your scraped items
#
# See documentation in:
# http://doc.scrapy.org/en/latest/topics/items.html
import scrapy
class JreduItem(scrapy.Item):#相当于Java里的实体类
  # define the fields for your item here like:
  # name = scrapy.Field()
  title = scrapy.Field()#创建一个field对象
  href = scrapy.Field()
  pass

middlewares.py  :

# -*- coding: utf-8 -*-
# Define here the models for your spider middleware
#
# See documentation in:
# http://doc.scrapy.org/en/latest/topics/spider-middleware.html
from scrapy import signals
class JreduSpiderMiddleware(object):
  # Not all methods need to be defined. If a method is not defined,
  # scrapy acts as if the spider middleware does not modify the
  # passed objects.
  @classmethod
  def from_crawler(cls, crawler):
    # This method is used by Scrapy to create your spiders.
    s = cls()
    crawler.signals.connect(s.spider_opened, signal=signals.spider_opened)
    return s
  def process_spider_input(self, response, spider):
    # Called for each response that goes through the spider
    # middleware and into the spider.
    # Should return None or raise an exception.
    return None
  def process_spider_output(self, response, result, spider):
    # Called with the results returned from the Spider, after
    # it has processed the response.
    # Must return an iterable of Request, dict or Item objects.
    for i in result:
      yield i
  def process_spider_exception(self, response, exception, spider):
    # Called when a spider or process_spider_input() method
    # (from other spider middleware) raises an exception.
    # Should return either None or an iterable of Response, dict
    # or Item objects.
    pass
  def process_start_requests(self, start_requests, spider):
    # Called with the start requests of the spider, and works
    # similarly to the process_spider_output() method, except
    # that it doesn't have a response associated.
    # Must return only requests (not items).
    for r in start_requests:
      yield r
  def spider_opened(self, spider):
    spider.logger.info('Spider opened: %s' % spider.name)

pipelines.py  :

# -*- coding: utf-8 -*-
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html
import codecs
import json
class JreduPipeline(object):
  def __init__(self):
    self.fill = codecs.open("data.txt",encoding="utf-8",mode="wb");
  def process_item(self, item, spider):
    line = json.dumps(dict(item))+"\n"
    self.fill.write(line)
    return item

settings.py   :

# -*- coding: utf-8 -*-
# Scrapy settings for jredu project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#   http://doc.scrapy.org/en/latest/topics/settings.html
#   http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
#   http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html
BOT_NAME = 'jredu'
SPIDER_MODULES = ['jredu.spiders']
NEWSPIDER_MODULE = 'jredu.spiders'
# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'jredu (+http://www.yourdomain.com)'
# Obey robots.txt rules
ROBOTSTXT_OBEY = True
# Configure maximum concurrent requests performed by Scrapy (default: 16)
#CONCURRENT_REQUESTS = 32
# Configure a delay for requests for the same website (default: 0)
# See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
#DOWNLOAD_DELAY = 3
# The download delay setting will honor only one of:
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
#CONCURRENT_REQUESTS_PER_IP = 16
# Disable cookies (enabled by default)
#COOKIES_ENABLED = False
# Disable Telnet Console (enabled by default)
#TELNETCONSOLE_ENABLED = False
# Override the default request headers:
#DEFAULT_REQUEST_HEADERS = {
#  'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
#  'Accept-Language': 'en',
#}
# Enable or disable spider middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html
#SPIDER_MIDDLEWARES = {
#  'jredu.middlewares.JreduSpiderMiddleware': 543,
#}
# Enable or disable downloader middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
#DOWNLOADER_MIDDLEWARES = {
#  'jredu.middlewares.MyCustomDownloaderMiddleware': 543,
#}
# Enable or disable extensions
# See http://scrapy.readthedocs.org/en/latest/topics/extensions.html
#EXTENSIONS = {
#  'scrapy.extensions.telnet.TelnetConsole': None,
#}
# Configure item pipelines
# See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
  'jredu.pipelines.JreduPipeline': 300,
}
# Enable and configure the AutoThrottle extension (disabled by default)
# See http://doc.scrapy.org/en/latest/topics/autothrottle.html
#AUTOTHROTTLE_ENABLED = True
# The initial download delay
#AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
#AUTOTHROTTLE_MAX_DELAY = 60
# The average number of requests Scrapy should be sending in parallel to
# each remote server
#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
# Enable showing throttling stats for every response received:
#AUTOTHROTTLE_DEBUG = False
# Enable and configure HTTP caching (disabled by default)
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
#HTTPCACHE_ENABLED = True
#HTTPCACHE_EXPIRATION_SECS = 0
#HTTPCACHE_DIR = 'httpcache'
#HTTPCACHE_IGNORE_HTTP_CODES = []
#HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'

最后需要一个程序入口的方法:

main.py     :

#!/usr/bin/python
# -*- coding:utf-8 -*-
#爬虫文件的执行入口
from scrapy import cmdline
cmdline.execute("scrapy crawl tt".split())

更多关于Python相关内容可查看本站专题:《Python Socket编程技巧总结》、《Python正则表达式用法总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • python3使用urllib模块制作网络爬虫

    urllib urllib模块是python3的URL处理包 其中: 1.urllib.request主要是打开和阅读urls 个人平时主要用的1: 打开对应的URL:urllib.request.open(url) 用urllib.request.build_opener([handler, ...]),来伪装成对应的浏览器 import urllib #要伪装成的浏览器(我这个是用的chrome) headers = ('User-Agent','Mozilla/5.0 (Windows N

  • python网络爬虫 Scrapy中selenium用法详解

    引入 在通过scrapy框架进行某些网站数据爬取的时候,往往会碰到页面动态数据加载的情况发生,如果直接使用scrapy对其url发请求,是绝对获取不到那部分动态加载出来的数据值.但是通过观察我们会发现,通过浏览器进行url请求发送则会加载出对应的动态加载出的数据.那么如果我们想要在scrapy也获取动态加载出的数据,则必须使用selenium创建浏览器对象,然后通过该浏览器对象进行请求发送,获取动态加载的数据值. 1.案例分析: - 需求:爬取网易新闻的国内.国际.军事.无人机板块下的新闻数据

  • python网络爬虫 CrawlSpider使用详解

    CrawlSpider 作用:用于进行全站数据爬取 CrawlSpider就是Spider的一个子类 如何新建一个基于CrawlSpider的爬虫文件 scrapy genspider -t crawl xxx www.xxx.com 例:choutiPro LinkExtractor连接提取器:根据指定规则(正则)进行连接的提取 Rule规则解析器:将连接提取器提取到的连接进行请求发送,然后对获取的页面进行指定规则[callback]的解析 一个链接提取器对应唯一一个规则解析器 例:crawl

  • python爬虫 基于requests模块发起ajax的get请求实现解析

    基于requests模块发起ajax的get请求 需求:爬取豆瓣电影分类排行榜 https://movie.douban.com/中的电影详情数据 用抓包工具捉取 使用ajax加载页面的请求 鼠标往下下滚轮拖动页面,会加载更多的电影信息,这个局部刷新是当前页面发起的ajax请求, 用抓包工具捉取页面刷新的ajax的get请求,捉取滚轮在最底部时候发起的请求 这个get请求是本次发起的请求的url ajax的get请求携带参数 获取响应内容不再是页面数据,是json字符串,是通过异步请求获取的电影

  • Python大数据之使用lxml库解析html网页文件示例

    本文实例讲述了Python大数据之使用lxml库解析html网页文件.分享给大家供大家参考,具体如下: lxml是Python的一个html/xml解析并建立dom的库,lxml的特点是功能强大,性能也不错,xml包含了ElementTree ,html5lib ,beautfulsoup 等库. 使用lxml前注意事项:先确保html经过了utf-8解码,即code =html.decode('utf-8', 'ignore'),否则会出现解析出错情况.因为中文被编码成utf-8之后变成 '/

  • python2与python3爬虫中get与post对比解析

    python2中的urllib2改为python3中的urllib.request 四种方式对比: python2的get # coding=utf-8 import urllib import urllib2 word = urllib.urlencode({"wd":"百度"}) url = 'http://www.baidu.com/s' + '?' + word request = urllib2.Request(url) print urllib2.url

  • Python大数据之网络爬虫的post请求、get请求区别实例分析

    本文实例讲述了Python大数据之网络爬虫的post请求.get请求区别.分享给大家供大家参考,具体如下: 在JetBrains PyCharm 2016.3软件中编写代码前,需要指定python和编码方式: #!user/bin/python 编码方式 :#coding=utf-8 或者 #-*-coding:utf-8-*- post请求: #导入工具,内置的库 import urllib import urllib2 #加一个\可以换行 #response = \ #urllib2.url

  • Python网络爬虫与信息提取(实例讲解)

    课程体系结构: 1.Requests框架:自动爬取HTML页面与自动网络请求提交 2.robots.txt:网络爬虫排除标准 3.BeautifulSoup框架:解析HTML页面 4.Re框架:正则框架,提取页面关键信息 5.Scrapy框架:网络爬虫原理介绍,专业爬虫框架介绍 理念:The Website is the API ... Python语言常用的IDE工具 文本工具类IDE: IDLE.Notepad++.Sublime Text.Vim & Emacs.Atom.Komodo E

  • python爬虫 基于requests模块的get请求实现详解

    需求:爬取搜狗首页的页面数据 import requests # 1.指定url url = 'https://www.sogou.com/' # 2.发起get请求:get方法会返回请求成功的响应对象 response = requests.get(url=url) # 3.获取响应中的数据:text属性作用是可以获取响应对象中字符串形式的页面数据 page_data = response.text # 4.持久化数据 with open("sougou.html","w&

  • python爬虫 urllib模块发起post请求过程解析

    urllib模块发起的POST请求 案例:爬取百度翻译的翻译结果 1.通过浏览器捉包工具,找到POST请求的url 针对ajax页面请求的所对应url获取,需要用到浏览器的捉包工具.查看百度翻译针对某个字条发送ajax请求,所对应的url 点击clear按钮可以把抓包工具,所抓到请求清空 然后填上翻译字条发送ajax请求,红色框住的都是发送的ajax请求 抓包工具All按钮代表 显示抓到的所有请求 ,包括GET.POST请求 .基于ajax的POST请求 XHR代表 只显示抓到的基于ajax的P

  • python爬虫中get和post方法介绍以及cookie作用

    首先确定你要爬取的目标网站的表单提交方式,可以通过开发者工具看到.这里推荐使用chrome. 这里我用163邮箱为例 打开工具后再Network中,在Name选中想要了解的网站,右侧headers里的request method就是提交方式.status如果是200表示成功访问下面的有头信息,cookie是你登录之后产生的存储会话(session)信息的.第一次访问该网页需要提供用户名和密码,之后只需要在headers里提供cookie就可以登陆进去. 引入requests库,会提供get和po

  • 选择Python写网络爬虫的优势和理由

    什么是网络爬虫? 网络爬虫是一个自动提取网页的程序,它为搜索引擎从万维网上下载网页,是搜索引擎的重要组成.传统爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页的过程中,不断从当前页面上抽取新的URL放入队列,直到满足系统的一定停止条件 爬虫有什么用? 做为通用搜索引擎网页收集器.(google,baidu) 做垂直搜索引擎. 科学研究:在线人类行为,在线社群演化,人类动力学研究,计量社会学,复杂网络,数据挖掘,等领域的实证研究都需要大量数据,网络爬虫是收集相关数据的利器.

随机推荐