python+opencv边缘提取与各函数参数解析

前情提要:作为刚入门机器视觉的小伙伴,第一节课学到机器视觉语法时觉得很难理解,

很多人家的经验,我发现都千篇一律,功能函数没解析,参数不讲解,就一个代码,所以在此将搜集的解析和案例拿出来汇总!!!

一、opencv+python环境搭建

其实能写python的就能写opencv,但是工具很总要,代码提示也很重要,你可能会用submit     vs等工具,submit编码个人觉得不够智能,vs的话过完年我学的方向不一致,所以没用

推荐 pycharm ,在项目setting中的项目解释器中安装 opencv-python 即可进行编码。python环境搭建也灰常方便。

二、边缘提取案例

import cv2
def edge_demo(image):
  #GaussianBlur图像高斯平滑处理
  blurred = cv2.GaussianBlur(image, (3, 3), 0)
  #(3, 3)表示高斯矩阵的长与宽都是3,意思就是每个像素点按3*3的矩阵在周围取样求平均值,,标准差取0
  gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
  #颜色模式转换成cv2.COLOR_BGR2GRAY模式下的灰度图像

  edge_output = cv2.Canny(gray, 50, 150)
  #提取上一步中处理好的图像边缘,50和150分别代表低阈值和高阈值,高阈值用来将物体与背景区分开来,低的用于平滑连接高阈值产生的片段,使图像成一个整体
  cv2.imshow("canny edge", edge_output)#输出灰度图像
  #原图与灰度图像与运算,按照灰度图剪切加和的原图
  dst = cv2.bitwise_and(image, image, mask=edge_output)  cv2.imshow("color edge", dst)#输出带颜色边缘图像

if __name__ == '__main__':
  img = cv2.imread("cat.jpg")
  # cv2.namedWindow("input image", cv2.WINDOW_AUTOSIZE)
  cv2.imshow("input image", img)
  edge_demo(img)

  cv2.waitKey(0)#等待键盘输入,不输入 则无限等待
  cv2.destroyAllWindows()#清除所以窗口

三、解释功能函数

其实上面的代码也是用的别人的,但绝大多数都没有解释,对于像我这种新手不是很友好

高斯处理

图像处理中,常用的滤波算法有均值滤波、中值滤波以及高斯滤波等。

三种滤波器的对比:

滤波器种类 基本原理 特点

均值滤波 使用模板内所有像素的平均值代替模板中心像素灰度值 易收到噪声的干扰,不能完全消除噪声,只能相对减弱噪声

中值滤波 计算模板内所有像素中的中值,并用所计算出来的中值体改模板中心像素的灰度值 对噪声不是那么敏感,能够较好的消除椒盐噪声,但是容易导致图像的不连续性

高斯滤波 对图像邻域内像素进行平滑时,邻域内不同位置的像素被赋予不同的权值 对图像进行平滑的同时,同时能够更多的保留图像的总体灰度分布特征

意思就是使你的图像灰度分布更均匀,每个点的像素均为周围 按3*3的矩阵在周围取样求平均值,,标准差取0来处

 blurred = cv2.GaussianBlur(image, (3, 3), 0)
#GaussianBlur图像高斯平滑处理
#(3, 3)表示高斯矩阵的长与宽都是3,意思就是每个像素点按3*3的矩阵在周围取样求平均值,,标准差取0

灰度转换----》也叫做二值化处理

故名思意就是转换成黑白图像,后面的参数中    cv2.COLOR_BGR2GRAY  其实就是色彩模式,所以函数名为 cvtColor(色彩模式转换)

cvtColor()用于将图像从一个颜色空间转换到另一个颜色空间的转换(目前常见的颜色空间均支持),并且在转换的过程中能够保证数据的类型不变, 即转换后的图像的数据类型和位深与源图像一致

 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
  #颜色模式转换成cv2.COLOR_BGR2GRAY模式下的灰度图像

边缘识别提取

这一步是将二值化后的图像提取边缘,50和150分别代表低阈值和高阈值,高阈值用来将物体与背景区分开来,低的用于平滑连接高阈值产生的片段,使图像成一个整体

简明而言就是,小的用于细小的地方处理,大的宏观处理----》大阈值用于分离背景与轮廓,晓得用于拼接细小的轮廓,即可形成一个整体

edge_output = cv2.Canny(gray, 50, 150)
  #提取上一步中处理好的图像边缘,50和150分别代表低阈值和高阈值,高阈值用来将物体与背景区分开来,低的用于平滑连接高阈值产生的片段,使图像成一个整体

输出即可,小面的函数只是对比学习而已,可以不用

(对于dst = cv2.bitwise_and(image, image, mask=edge_output) cv2.imshow("color edge", dst)#输出带颜色边缘图像

)

到此这篇关于python+opencv边缘提取与各函数参数解析的文章就介绍到这了,更多相关python opencv边缘提取内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • opencv python Canny边缘提取实现过程解析

    这篇文章主要介绍了opencv python Canny边缘提取实现过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 Canny是边缘提取算法,在1986年提出的是一个很好的边缘检测器Canny算法介绍 非最大信号抑制: 高低阈值连接: example import cv2 as cv import numpy as np # canny运算步骤:5步 # 1. 高斯模糊 - GaussianBlur # 2. 灰度转换 - cvtCol

  • python+opencv边缘提取与各函数参数解析

    前情提要:作为刚入门机器视觉的小伙伴,第一节课学到机器视觉语法时觉得很难理解, 很多人家的经验,我发现都千篇一律,功能函数没解析,参数不讲解,就一个代码,所以在此将搜集的解析和案例拿出来汇总!!! 一.opencv+python环境搭建 其实能写python的就能写opencv,但是工具很总要,代码提示也很重要,你可能会用submit     vs等工具,submit编码个人觉得不够智能,vs的话过完年我学的方向不一致,所以没用 推荐 pycharm ,在项目setting中的项目解释器中安装

  • Python OpenCV简单的绘图函数使用教程

    目录 1.画直线的函数是cv2.line 2.画矩形的函数是cv2.rectangle 3.画圆函数是cv2.circle 4.画椭圆的函数是cv2.elipes 5.画多边形的函数是cv2.polylines 6.添加文字的函数是cv2.putText 1.画直线的函数是cv2.line cv2.line函数语法: cv2.line(img,start_point,end_point,color,thickness=0) cv2.line函数参数解释: img:需要画的图像 start_poi

  • python通过装饰器检查函数参数数据类型的方法

    本文实例讲述了python通过装饰器检查函数参数数据类型的方法.分享给大家供大家参考.具体分析如下: 这段代码定义了一个python装饰器,通过此装饰器可以用来检查指定函数的参数是否是指定的类型,在定义函数时加入此装饰器可以非常清晰的检测函数参数的类型,非常方便 复制代码 代码如下: def accepts(exception,**types):     def check_accepts(f):         assert len(types) == f.func_code.co_argco

  • python Opencv计算图像相似度过程解析

    这篇文章主要介绍了python Opencv计算图像相似度过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一.相关概念 一般我们人区分谁是谁,给物品分类,都是通过各种特征去辨别的,比如黑长直.大白腿.樱桃唇.瓜子脸.王麻子脸上有麻子,隔壁老王和儿子很像,但是儿子下巴涨了一颗痣和他妈一模一样,让你确定这是你儿子. 还有其他物品.什么桌子带腿.镜子反光能在里面倒影出东西,各种各样的特征,我们通过学习.归纳,自然而然能够很快识别分类出新物品.

  • Python 带星号(* 或 **)的函数参数详解

    1. 带默认值的参数 在了解带星号(*)的参数之前,先看下带有默认值的参数,函数定义如下: >> def defaultValueArgs(common, defaultStr = "default", defaultNum = 0): print("Common args", common) print("Default String", defaultStr) print("Default Number", d

  • Python中sort和sorted函数代码解析

    本文研究的主要是Python中sort和sorted函数的相关内容,具体如下. 一.sort函数 sort函数是序列的内部函数 函数原型: L.sort(cmp=None, key=None, reverse=False) 函数作用: 它是把L原地排序,也就是使用后并不是返回一个有序的序列副本,而是把当前序列变得有序 参数说明: (1) cmp参数 cmp接受一个函数,拿整形举例,形式为: def f(a,b): return a-b 如果排序的元素是其他类型的,如果a逻辑小于b,函数返回负数:

  • python 装饰器功能以及函数参数使用介绍

    简单的说:装饰器主要作用就是对函数进行一些修饰,它的出现是在引入类方法和静态方法的时候为了定义静态方法出现的.例如为了把foo()函数声明成一个静态函数 复制代码 代码如下: class Myclass(object): def staticfoo(): ............ ............ staticfoo = staticmethod(staticfoo) 可以用装饰器的方法实现: 复制代码 代码如下: class Myclass(object): @staticmethod

  • Python OpenCV中的resize()函数的使用

    改变图像大小意味着改变尺寸,无论是单独的高或宽,还是两者.也可以按比例调整图像大小. 这里将介绍resize()函数的语法及实例. 语法 函数原型 cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) 参数: 参数 描述 src [必需]原图像 dsize [必需]输出图像所需大小 fx [可选]沿水平轴的比例因子 fy [可选]沿垂直轴的比例因子 interpolation [可选]插值方式 [可选]插值方式 其中插值方式有很多种

  • Python Opencv轮廓常用操作代码实例解析

    1.颜色空间转换 使用cv2.cvtColor(input_image ,flag),flag为转换类型 常用的转换类型有: BGR和灰度图的转换使用 cv2.COLOR_BGR2GRAY BGR和HSV的转换使用 cv2.COLOR_BGR2HSV img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 2.二值化 ret, dst = cv2.threshold(src, thresh, maxval, type) src:表示的是图片源(灰度图)

  • Python中的函数参数(位置参数、默认参数、可变参数)

    目录 一.位置参数 二.默认参数 三.可变参数 四.关键字参数 五.命名关键字参数 六.各种参数之间的组合 函数的参数:Python中函数定义非常简单,由于函数参数的存在,使函数变得非常灵活应用广泛:不但使得函数能够处理复杂多变的参数,还能简化函数的调用. Python中的函数参数有如下几种:位置参数.默认参数.可变参数.关键字参数和命名关键字参数 一.位置参数 位置参数(positional arguments)就是其他语言的参数,其他语言没有分参数的种类是因为只有这一种参数, 所有参数都遵循

随机推荐