聊聊pytorch中Optimizer与optimizer.step()的用法

当我们想指定每一层的学习率时:

optim.SGD([
                    {'params': model.base.parameters()},
                    {'params': model.classifier.parameters(), 'lr': 1e-3}
                ], lr=1e-2, momentum=0.9)

这意味着model.base的参数将会使用1e-2的学习率,model.classifier的参数将会使用1e-3的学习率,并且0.9的momentum将会被用于所有的参数。

进行单次优化

所有的optimizer都实现了step()方法,这个方法会更新所有的参数。它能按两种方式来使用:

optimizer.step()

这是大多数optimizer所支持的简化版本。一旦梯度被如backward()之类的函数计算好后,我们就可以调用这个函数。

例子

for input, target in dataset:
        optimizer.zero_grad()
        output = model(input)
        loss = loss_fn(output, target)
        loss.backward()
        optimizer.step()
optimizer.step(closure)

一些优化算法例如Conjugate Gradient和LBFGS需要重复多次计算函数,因此你需要传入一个闭包去允许它们重新计算你的模型。这个闭包应当清空梯度,计算损失,然后返回。

例子:

for input, target in dataset:
    def closure():
        optimizer.zero_grad()
        output = model(input)
        loss = loss_fn(output, target)
        loss.backward()
        return loss
    optimizer.step(closure)

补充:Pytorch optimizer.step() 和loss.backward()和scheduler.step()的关系与区别

首先需要明确optimzier优化器的作用, 形象地来说,优化器就是需要根据网络反向传播的梯度信息来更新网络的参数,以起到降低loss函数计算值的作用,这也是机器学习里面最一般的方法论。

从优化器的作用出发,要使得优化器能够起作用,需要主要两个东西:

1. 优化器需要知道当前的网络或者别的什么模型的参数空间

这也就是为什么在训练文件中,正式开始训练之前需要将网络的参数放到优化器里面,比如使用pytorch的话总会出现类似如下的代码:

optimizer_G = Adam(model_G.parameters(), lr=train_c.lr_G)   # lr 使用的是初始lr
optimizer_D = Adam(model_D.parameters(), lr=train_c.lr_D)

2. 需要知道反向传播的梯度信息

我们还是从代码入手,如下所示是Pytorch 中SGD优化算法的step()函数具体写法,具体SGD的写法放在参考部分。

def step(self, closure=None):
            """Performs a single optimization step.
            Arguments:
                closure (callable, optional): A closure that reevaluates the model
                    and returns the loss.
            """
            loss = None
            if closure is not None:
                loss = closure()

            for group in self.param_groups:
                weight_decay = group['weight_decay']
                momentum = group['momentum']
                dampening = group['dampening']
                nesterov = group['nesterov']

                for p in group['params']:
                    if p.grad is None:
                        continue
                    d_p = p.grad.data
                    if weight_decay != 0:
                        d_p.add_(weight_decay, p.data)
                    if momentum != 0:
                        param_state = self.state[p]
                        if 'momentum_buffer' not in param_state:
                            buf = param_state['momentum_buffer'] = d_p.clone()
                        else:
                            buf = param_state['momentum_buffer']
                            buf.mul_(momentum).add_(1 - dampening, d_p)
                        if nesterov:
                            d_p = d_p.add(momentum, buf)
                        else:
                            d_p = buf
                    p.data.add_(-group['lr'], d_p)
            return loss

从上面的代码可以看到step这个函数使用的是参数空间(param_groups)中的grad,也就是当前参数空间对应的梯度,这也就解释了为什么optimzier使用之前需要zero清零一下,因为如果不清零,那么使用的这个grad就得同上一个mini-batch有关,这不是我们需要的结果。

再回过头来看,我们知道optimizer更新参数空间需要基于反向梯度,因此,当调用optimizer.step()的时候应当是loss.backward()的时候,这也就是经常会碰到,如下情况

total_loss.backward()
optimizer_G.step()

loss.backward()在前,然后跟一个step。

那么为什么optimizer.step()需要放在每一个batch训练中,而不是epoch训练中,这是因为现在的mini-batch训练模式是假定每一个训练集就只有mini-batch这样大,因此实际上可以将每一次mini-batch看做是一次训练,一次训练更新一次参数空间,因而optimizer.step()放在这里。

scheduler.step()按照Pytorch的定义是用来更新优化器的学习率的,一般是按照epoch为单位进行更换,即多少个epoch后更换一次学习率,因而scheduler.step()放在epoch这个大循环下。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • PyTorch中model.zero_grad()和optimizer.zero_grad()用法

    废话不多说,直接上代码吧~ model.zero_grad() optimizer.zero_grad() 首先,这两种方式都是把模型中参数的梯度设为0 当optimizer = optim.Optimizer(net.parameters())时,二者等效,其中Optimizer可以是Adam.SGD等优化器 def zero_grad(self): """Sets gradients of all model parameters to zero.""

  • Pytorch 中的optimizer使用说明

    与优化函数相关的部分在torch.optim模块中,其中包含了大部分现在已有的流行的优化方法. 如何使用Optimizer 要想使用optimizer,需要创建一个optimizer 对象,这个对象会保存当前状态,并根据梯度更新参数. 怎样构造Optimizer 要构造一个Optimizer,需要使用一个用来包含所有参数(Tensor形式)的iterable,把相关参数(如learning rate.weight decay等)装进去. 注意,如果想要使用.cuda()方法来将model移到GP

  • pytorch中Schedule与warmup_steps的用法说明

    1. lr_scheduler相关 lr_scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=num_train_optimization_steps) 其中args.warmup_steps可以认为是耐心系数 num_train_optimization_steps为模型参数的总更新次数 一般来说: num_train_optimization_steps = int(total

  • PyTorch的Optimizer训练工具的实现

    torch.optim 是一个实现了各种优化算法的库.大部分常用的方法得到支持,并且接口具备足够的通用性,使得未来能够集成更加复杂的方法. 使用 torch.optim,必须构造一个 optimizer 对象.这个对象能保存当前的参数状态并且基于计算梯度更新参数. 例如: optimizer = optim.SGD(model.parameters(), lr = 0.01, momentum=0.9) optimizer = optim.Adam([var1, var2], lr = 0.00

  • 聊聊PHP中die()和sleep()函数的用法

    在上一篇<聊聊PHP中删除字符串的逗号和尾部斜杠的方法>给大家介绍了PHP删除字符串中的逗号以及尾部斜杠的方法,感兴趣的朋友可以去学习了解一下~ 本文也将给大家通过示例来讲解标题所述"PHP中die()和sleep()函数的用法". 一.关于die()函数的用法 die()是在PHP一个内置功能.它用于打印消息并退出当前的 php 脚本.相当于PHP 中的exit()函数. 语法很简单,如"die($message)" die()函数只接受一个参数,并且

  • 聊聊pytorch中Optimizer与optimizer.step()的用法

    当我们想指定每一层的学习率时: optim.SGD([ {'params': model.base.parameters()}, {'params': model.classifier.parameters(), 'lr': 1e-3} ], lr=1e-2, momentum=0.9) 这意味着model.base的参数将会使用1e-2的学习率,model.classifier的参数将会使用1e-3的学习率,并且0.9的momentum将会被用于所有的参数. 进行单次优化 所有的optimiz

  • 聊聊PyTorch中eval和no_grad的关系

    首先这两者有着本质上区别 model.eval()是用来告知model内的各个layer采取eval模式工作.这个操作主要是应对诸如dropout和batchnorm这些在训练模式下需要采取不同操作的特殊layer.训练和测试的时候都可以开启. torch.no_grad()则是告知自动求导引擎不要进行求导操作.这个操作的意义在于加速计算.节约内存.但是由于没有gradient,也就没有办法进行backward.所以只能在测试的时候开启. 所以在evaluate的时候,需要同时使用两者. mod

  • 聊聊PHP中require_once()函数为什么不好用

    在上一篇<聊聊PHP中die()和sleep()函数的用法>中给大家简单介绍了die()和sleep()函数的使用方法,感兴趣的朋友可以去学习了解一下~ 本文将告诉你PHP中require_once()为什么不好用! 不过在说它不好用之前,我们先开看看require_once()函数的定义和用法. require_once()函数是PHP中的内置函数,当我们想要将一个PHP文件引入到另一个文件中时,例如当我们需要在PHP脚本中多次引入一个文件时,它就非常有用了.它用于检查文件是否被包含了不止一

  • pytorch中的优化器optimizer.param_groups用法

    optimizer.param_groups: 是长度为2的list,其中的元素是2个字典: optimizer.param_groups[0]: 长度为6的字典,包括['amsgrad', 'params', 'lr', 'betas', 'weight_decay', 'eps']这6个参数: optimizer.param_groups[1]: 好像是表示优化器的状态的一个字典: import torch import torch.optim as optimh2 w1 = torch.r

  • 关于pytorch中网络loss传播和参数更新的理解

    相比于2018年,在ICLR2019提交论文中,提及不同框架的论文数量发生了极大变化,网友发现,提及tensorflow的论文数量从2018年的228篇略微提升到了266篇,keras从42提升到56,但是pytorch的数量从87篇提升到了252篇. TensorFlow: 228--->266 Keras: 42--->56 Pytorch: 87--->252 在使用pytorch中,自己有一些思考,如下: 1. loss计算和反向传播 import torch.nn as nn

  • Pytorch中accuracy和loss的计算知识点总结

    这几天关于accuracy和loss的计算有一些疑惑,原来是自己还没有弄清楚. 给出实例 def train(train_loader, model, criteon, optimizer, epoch): train_loss = 0 train_acc = 0 num_correct= 0 for step, (x,y) in enumerate(train_loader): # x: [b, 3, 224, 224], y: [b] x, y = x.to(device), y.to(de

  • Pytorch 中retain_graph的用法详解

    用法分析 在查看SRGAN源码时有如下损失函数,其中设置了retain_graph=True,其作用是什么? ############################ # (1) Update D network: maximize D(x)-1-D(G(z)) ########################### real_img = Variable(target) if torch.cuda.is_available(): real_img = real_img.cuda() z = V

随机推荐