Python实战小项目之Mnist手写数字识别

目录
  • 程序流程分析图:
  • 传播过程:
  • 代码展示:
    • 创建环境
    • 准备数据集
    • 下载数据集
    • 下载测试集
    • 绘制图像
    • 搭建神经网络
    • 训练模型
    • 测试模型
    • 保存训练模型
  • 运行结果展示:

程序流程分析图:

传播过程:

代码展示:

创建环境

使用<pip install+包名>来下载torch,torchvision包

准备数据集

设置一次训练所选取的样本数Batch_Sized的值为512,训练此时Epochs的值为8

BATCH_SIZE = 512
EPOCHS = 8
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

下载数据集

Normalize()数字归一化,转换使用的值0.1307和0.3081是MNIST数据集的全局平均值和标准偏差,这里我们将它们作为给定值。model

train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('data', train=True, download=True,
                   transform=transforms.Compose([.
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=BATCH_SIZE, shuffle=True)

下载测试集

test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('data', train=False,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=BATCH_SIZE, shuffle=True)

绘制图像

我们可以使用matplotlib来绘制其中的一些图像

examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)
print(example_targets)
print(example_data.shape)
print(example_data)

import matplotlib.pyplot as plt
fig = plt.figure()
for i in range(6):
  plt.subplot(2,3,i+1)
  plt.tight_layout()
  plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
  plt.title("Ground Truth: {}".format(example_targets[i]))
  plt.xticks([])
  plt.yticks([])
plt.show()

搭建神经网络

这里我们构建全连接神经网络,我们使用三个全连接(或线性)层进行前向传播。

class linearNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(784, 128)
        self.fc2 = nn.Linear(128, 64)
        self.fc3 = nn.Linear(64, 10)
    def forward(self, x):
        x = x.view(-1, 784)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = F.relu(x)
        x = self.fc3(x)
        x = F.log_softmax(x, dim=1)
        return x

训练模型

首先,我们需要使用optimizer.zero_grad()手动将梯度设置为零,因为PyTorch在默认情况下会累积梯度。然后,我们生成网络的输出(前向传递),并计算输出与真值标签之间的负对数概率损失。现在,我们收集一组新的梯度,并使用optimizer.step()将其传播回每个网络参数。

def train(model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):

        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if (batch_idx) % 30 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))

测试模型

def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item() # 将一批的损失相加
            pred = output.max(1, keepdim=True)[1] # 找到概率最大的下标
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

将训练次数进行循环

if __name__ == '__main__':
    model = linearNet()
    optimizer = optim.Adam(model.parameters())

    for epoch in range(1, EPOCHS + 1):
        train(model, device, train_loader, optimizer, epoch)
        test(model, device, test_loader)

保存训练模型

torch.save(model, 'MNIST.pth')

运行结果展示:

分享人:苏云云

到此这篇关于Python实战小项目之Mnist手写数字识别的文章就介绍到这了,更多相关Python Mnist手写数字识别内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python MNIST手写识别数据调用API的方法

    MNIST数据集比较小,一般入门机器学习都会采用这个数据集来训练 下载地址:yann.lecun.com/exdb/mnist/ 有4个有用的文件: train-images-idx3-ubyte: training set images train-labels-idx1-ubyte: training set labels t10k-images-idx3-ubyte: test set images t10k-labels-idx1-ubyte: test set labels The t

  • Python利用全连接神经网络求解MNIST问题详解

    本文实例讲述了Python利用全连接神经网络求解MNIST问题.分享给大家供大家参考,具体如下: 1.单隐藏层神经网络 人类的神经元在树突接受刺激信息后,经过细胞体处理,判断如果达到阈值,则将信息传递给下一个神经元或输出.类似地,神经元模型在输入层输入特征值x之后,与权重w相乘求和再加上b,经过激活函数判断后传递给下一层隐藏层或输出层. 单神经元的模型只有一个求和节点(如左下图所示).全连接神经网络(Full Connected Networks)如右下图所示,中间层有多个神经元,并且每层的每个

  • Python读入mnist二进制图像文件并显示实例

    图像文件是自己仿照mnist格式制作,每张图像大小为128*128 import struct import matplotlib.pyplot as plt import numpy as np #读入整个训练数据集图像 filename = 'train-images-idx3-ubyte' binfile = open(filename, 'rb') buf = binfile.read() #读取头四个32bit的interger index = 0 magic, numImages,

  • Python利用逻辑回归模型解决MNIST手写数字识别问题详解

    本文实例讲述了Python利用逻辑回归模型解决MNIST手写数字识别问题.分享给大家供大家参考,具体如下: 1.MNIST手写识别问题 MNIST手写数字识别问题:输入黑白的手写阿拉伯数字,通过机器学习判断输入的是几.可以通过TensorFLow下载MNIST手写数据集,通过import引入MNIST数据集并进行读取,会自动从网上下载所需文件. %matplotlib inline import tensorflow as tf import tensorflow.examples.tutori

  • python读取mnist数据集方法案例详解

    mnist手写数字数据集在机器学习中非常常见,这里记录一下用python从本地读取mnist数据集的方法. 数据集格式介绍 这部分内容网络上很常见,这里还是简明介绍一下.网络上下载的mnist数据集包含4个文件: 前两个分别是测试集的image和label,包含10000个样本.后两个是训练集的,包含60000个样本..gz表示这个一个压缩包,如果进行解压的话,会得到.ubyte格式的二进制文件. 上图是训练集的label和image数据的存储格式.两个文件最开始都有magic number和n

  • Python tensorflow实现mnist手写数字识别示例【非卷积与卷积实现】

    本文实例讲述了Python tensorflow实现mnist手写数字识别.分享给大家供大家参考,具体如下: 非卷积实现 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data data_path = 'F:\CNN\data\mnist' mnist_data = input_data.read_data_sets(data_path,one_hot=True) #offline da

  • Python实战小项目之Mnist手写数字识别

    目录 程序流程分析图: 传播过程: 代码展示: 创建环境 准备数据集 下载数据集 下载测试集 绘制图像 搭建神经网络 训练模型 测试模型 保存训练模型 运行结果展示: 程序流程分析图: 传播过程: 代码展示: 创建环境 使用<pip install+包名>来下载torch,torchvision包 准备数据集 设置一次训练所选取的样本数Batch_Sized的值为512,训练此时Epochs的值为8 BATCH_SIZE = 512 EPOCHS = 8 device = torch.devi

  • Python实战之MNIST手写数字识别详解

    目录 数据集介绍 1.数据预处理 2.网络搭建 3.网络配置 关于优化器 关于损失函数 关于指标 4.网络训练与测试 5.绘制loss和accuracy随着epochs的变化图 6.完整代码 数据集介绍 MNIST数据集是机器学习领域中非常经典的一个数据集,由60000个训练样本和10000个测试样本组成,每个样本都是一张28 * 28像素的灰度手写数字图片,且内置于keras.本文采用Tensorflow下Keras(Keras中文文档)神经网络API进行网络搭建. 开始之前,先回忆下机器学习

  • PyTorch CNN实战之MNIST手写数字识别示例

    简介 卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的. 卷积神经网络CNN的结构一般包含这几个层: 输入层:用于数据的输入 卷积层:使用卷积核进行特征提取和特征映射 激励层:由于卷积也是一种线性运算,因此需要增加非线性映射 池化层:进行下采样,对特征图稀疏处理,减少数据运算量. 全连接层:通常在CNN的尾部进行重新拟合,减

  • Python使用gluon/mxnet模块实现的mnist手写数字识别功能完整示例

    本文实例讲述了Python使用gluon/mxnet模块实现的mnist手写数字识别功能.分享给大家供大家参考,具体如下: import gluonbook as gb from mxnet import autograd,nd,init,gluon from mxnet.gluon import loss as gloss,data as gdata,nn,utils as gutils import mxnet as mx net = nn.Sequential() with net.nam

  • 如何将tensorflow训练好的模型移植到Android (MNIST手写数字识别)

    [尊重原创,转载请注明出处]https://blog.csdn.net/guyuealian/article/details/79672257 项目Github下载地址:https://github.com/PanJinquan/Mnist-tensorFlow-AndroidDemo 本博客将以最简单的方式,利用TensorFlow实现了MNIST手写数字识别,并将Python TensoFlow训练好的模型移植到Android手机上运行.网上也有很多移植教程,大部分是在Ubuntu(Linu

  • pytorch 利用lstm做mnist手写数字识别分类的实例

    代码如下,U我认为对于新手来说最重要的是学会rnn读取数据的格式. # -*- coding: utf-8 -*- """ Created on Tue Oct 9 08:53:25 2018 @author: www """ import sys sys.path.append('..') import torch import datetime from torch.autograd import Variable from torch im

  • Tensorflow训练MNIST手写数字识别模型

    本文实例为大家分享了Tensorflow训练MNIST手写数字识别模型的具体代码,供大家参考,具体内容如下 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入层节点=图片像素=28x28=784 OUTPUT_NODE = 10 # 输出层节点数=图片类别数目 LAYER1_NODE = 500 # 隐藏层节点数,只有一个隐藏层 BATCH

  • 使用python svm实现直接可用的手写数字识别

    目录 python svm实现手写数字识别--直接可用 1.训练 1.1.训练数据集下载--已转化成csv文件 1.2 .训练源码 2.预测单张图片 2.1.待预测图像 2.2.预测源码 2.3.预测结果 python svm实现手写数字识别--直接可用 最近在做个围棋识别的项目,需要识别下面的数字,如下图: 我发现现在网上很多代码是良莠不齐,-真是一言难尽,于是记录一下,能够运行成功并识别成功的一个源码. 1.训练 1.1.训练数据集下载--已转化成csv文件 下载地址 1.2 .训练源码 t

随机推荐