java算法导论之FloydWarshall算法实现代码

摘要: 算法导论之FloydWarshall算法

求一个图中任意两点之间的最短路径

    FloydWarshall算法是通过动态规划来计算任意两点之间的最短路径 

        如果普通求最短路径,可以对图进行V次(顶点数)BellmanFord算法。 这样的话时间复杂度为EV^2
        如果是稀疏图,则近似于V^3
        但是如果是密集图,则时间复杂度会近似达到V^4,这种情况需要优化,这里FloydWarshall通过动态规划进行优化
        ,并且使用邻接矩阵来表示图。

实例代码:

package org.loda.graph;

import java.math.BigDecimal;
import java.math.RoundingMode;

import org.loda.util.In;

/**
 *
 * @ClassName: FloydWarshall
 * @Description: 求一个图中任意两点之间的最短路径
 *
 *        FloydWarshall算法是通过动态规划来计算任意两点之间的最短路径
 *
 *        如果普通求最短路径,可以对图进行V次(顶点数)BellmanFord算法。 这样的话时间复杂度为EV^2
 *        如果是稀疏图,则近似于V^3
 *        但是如果是密集图,则时间复杂度会近似达到V^4,这种情况需要优化,这里FloydWarshall通过动态规划进行优化
 *        ,并且使用邻接矩阵来表示图。
 *         d(i,j); if m=0
 *        D(i,j,m)={
 *         min(D(i,m,m-1)+D(m,j,m-1),D(i,j,m-1)); if m!=0
 * @author minjun
 * @date 2015年6月1日 上午9:39:42
 *
 */
public class FloydWarshall {

 private double[][] d;

 private int[][] prev;

 private int v;

 private boolean negativeCycle;

 public FloydWarshall(int v) {
 this.v = v;

 d = new double[v][v];

 prev = new int[v][v];

 // 默认设置所有节点都不可达,而自己到自己是可达并且距离为0.0
 for (int i = 0; i < v; i++) {
  for (int j = 0; j < v; j++) {
  d[i][j] = Double.POSITIVE_INFINITY;
  prev[i][j] = -1;
  if(i==j){
   d[i][j] = 0;
  }
  }
 }
 }

 /**
 *
 * @Title: findShortestPath
 * @Description: 查询最短路径
 * @param 设定文件
 * @return void 返回类型
 * @throws
 */
 public void findShortestPath() {
 //查找最短路径
 for (int k = 0; k < v; k++) {
  //将每个k值考虑成i->j路径中的一个中间点
  for (int i = 0; i < v; i++) {
  for (int j = 0; j < v; j++) {
   //如果存在使得权重和更小的中间值k,就更新最短路径为经过k的路径
   if (d[i][j] > d[i][k] + d[k][j]) {
   d[i][j] = d[i][k] + d[k][j];
   prev[i][j]=k;
   }
  }
  }
 }

 //四舍五入距离
 for (int i = 0; i < v; i++) {
  for (int j = 0; j < v; j++) {
  d[i][j] = new BigDecimal(d[i][j]).setScale(2,
   RoundingMode.HALF_UP).doubleValue();
  }
 }

 //检测负权重环的方式很简单,就是判断所有i->i的距离d[i][i],如果存在小于0的,表示这个i->i的环路的权重和形成了一个负值,也就是存在这个负权重
 //在之前的其他最短路径算法中,无法通过这个方法来检测负环,因为之前路径距离都是保存在一个一维数组中,相等于只能检测d[0][0],无法检测每个d[i][i]
 for(int i=0;i<v;i++){
  if(d[i][i]<0)
  negativeCycle=true;
 }
 }

 /**
 *
 * @Title: hasNegativeCycle
 * @Description: 是否拥有负权重环
 * @param @return 设定文件
 * @return boolean 返回类型
 * @throws
 */
 public boolean hasNegativeCycle() {
 return negativeCycle;
 }

 /**
 *
 * @Title: distTo
 * @Description: a->b最短路径的距离
 * @param @param a
 * @param @param b
 * @param @return 设定文件
 * @return double 返回类型
 * @throws
 */
 public double distTo(int a, int b) {
 if (hasNegativeCycle())
  throw new RuntimeException("有负权重环,不存在最短路径");
 return d[a][b];
 }

 /**
 *
 * @Title: printShortestPath
 * @Description: 打印a->b最短路径
 * @param @return 设定文件
 * @return Iterable<Integer> 返回类型
 * @throws
 */
 public boolean printShortestPath(int a,int b){
 if (hasNegativeCycle()){
  System.out.print("有负权重环,不存在最短路径");
 }else if(a==b)
  System.out.println(a+"->"+b);
 else{
  System.out.print(a+"->");
  path(a,b);
  System.out.print(b);
 }
 return true;
 }

 private void path(int a, int b) {
 int k=prev[a][b];

 if(k==-1){
  return;
 }

 path(a,k);
 System.out.print(k+"->");
 path(k,b);
 }

 /**
 *
 * @Title: addEdge
 * @Description: 添加边
 * @param @param a
 * @param @param b
 * @param @param w 设定文件
 * @return void 返回类型
 * @throws
 */
 public void addEdge(int a, int b, double w) {
 d[a][b] = w;
 }

 public static void main(String[] args) {
 // 不含负权重环的文本数据
 String text1 = "F:\\算法\\attach\\tinyEWDn.txt";
 // 含有负权重环的文本数据
 String text2 = "F:\\算法\\attach\\tinyEWDnc.txt";

 In in = new In(text1);

 int n = in.readInt();
 FloydWarshall f = new FloydWarshall(n);

 int e = in.readInt();

 for (int i = 0; i < e; i++) {
  f.addEdge(in.readInt(), in.readInt(), in.readDouble());
 }

 f.findShortestPath();

 int s = 0;
 for (int i = 0; i < n; i++) {
  System.out.println(s + "到" + i + "的距离为:" + f.distTo(s, i));
  f.printShortestPath(s, i);
  System.out.println();
 }
 }

}

如果采用负权重环图,则会抛出异常,提示负环并表示无最短路径

如果采用不含负环的图,则会打印如下内容(目前以s=0作测试,其他点作为原点的最短路径可以自行尝试):

0到0的距离为:0.0
0->0

0到1的距离为:0.93
0->2->7->3->6->4->5->1
0到2的距离为:0.26
0->2
0到3的距离为:0.99
0->2->7->3
0到4的距离为:0.26
0->2->7->3->6->4
0到5的距离为:0.61
0->2->7->3->6->4->5
0到6的距离为:1.51
0->2->7->3->6
0到7的距离为:0.6
0->2->7

感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

(0)

相关推荐

  • java数据结构与算法之快速排序详解

    本文实例讲述了java数据结构与算法之快速排序.分享给大家供大家参考,具体如下: 交换类排序的另一个方法,即快速排序. 快速排序:改变了冒泡排序中一次交换仅能消除一个逆序的局限性,是冒泡排序的一种改进:实现了一次交换可消除多个逆序.通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列. 步骤: 1.从数列中挑出一个元素,称为 "基准"(piv

  • java 基本算法之归并排序实例代码

    java 基本算法之归并排序实例代码 原理:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表, * 即把待排序序列分为若干个子序列,每个子序列是有序的.      * 然后再把有序子序列合并为整体有序序列. 实例代码: public class MergeSort { /** * * * * @param args */ public static void main(String[] args) { int a[] = { 49, 38, 65, 97, 76, 13,

  • Java 归并排序算法、堆排序算法实例详解

    基本思想: 归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的.然后再把有序子序列合并为整体有序序列. 归并排序示例: 合并方法: 设r[i-n]由两个有序子表r[i-m]和r[m+1-n]组成,两个子表长度分别为n-i +1.n-m. j=m+1:k=i:i=i; //置两个子表的起始下标及辅助数组的起始下标 若i>m 或j>n,转⑷ //其中一个子表已合并完,比较选取结束 //选取r[i]和r[j]较小的存入辅助数组

  • Java 选择排序、插入排序、希尔算法实例详解

    1.基本思想: 在要排序的一组数中,选出最小的一个数与第一个位置的数交换:然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止. 2.实例 3.算法实现 /** * 选择排序算法 * 在未排序序列中找到最小元素,存放到排序序列的起始位置 * 再从剩余未排序元素中继续寻找最小元素,然后放到排序序列末尾. * 以此类推,直到所有元素均排序完毕. * @param numbers */ public static void selectSort(int[] nu

  • java 算法之快速排序实现代码

    java 算法之快速排序实现代码 摘要: 常用算法之一的快速排序算法的java实现 原理:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描, 将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素, 此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分. /** * * @author 阿信sxq-2015年7月16日 * * @param args */ public static void main(String[] args) { int

  • java数据结构与算法之希尔排序详解

    本文实例讲述了java数据结构与算法之希尔排序.分享给大家供大家参考,具体如下: 这里要介绍的是希尔排序(缩小增量排序法). 希尔排序:通过比较相距一定间隔的元素来工作:各趟比较所用的距离(增量)随着算法的进行而减小,直到只比较相邻元素的最后一趟排序为止.是插入排序的一种,是针对直接插入排序算法的改进. 算法思想:先将要排序的序列按某个增量d分成若干个子序列,对每个子序列中全部元素分别进行直接插入排序,然后再用一个较小的增量对它进行分组,在每组中再进行排序.当增量减到1时,整个要排序的数被分成一

  • java数据结构与算法之插入排序详解

    本文实例讲述了java数据结构与算法之插入排序.分享给大家供大家参考,具体如下: 复习之余,就将数据结构中关于排序的这块知识点整理了一下,写下来是想与更多的人分享,最关键的是做一备份,为方便以后查阅. 排序 1.概念: 有n个记录的序列{R1,R2,.......,Rn}(此处注意:1,2,n 是下表序列,以下是相同的作用),其相应关键字的序列是{K1,K2,.........,Kn}.通过排序,要求找出当前下标序列1,2,......,n的一种排列p1,p2,........pn,使得相应关键

  • java数据结构与算法之简单选择排序详解

    本文实例讲述了java数据结构与算法之简单选择排序.分享给大家供大家参考,具体如下: 在前面的文章中已经讲述了交换类的排序算法,这节中开始说说选择类的排序算法了,首先来看一下选择排序的算法思想: 选择排序的基本算法思想: 每一趟在 n-i+1 (i=1,2,3,--,n-1)个记录中选取关键字最小的记录作为有序序列中第i个记录. 简单选择排序: 设所排序序列的记录个数为n.i取1,2,-,n-1,从所有n-i+1个记录(Ri,Ri+1,-,Rn)中找出排序码最小的记录,与第i个记录交换.执行n-

  • java算法导论之FloydWarshall算法实现代码

    摘要: 算法导论之FloydWarshall算法 求一个图中任意两点之间的最短路径 FloydWarshall算法是通过动态规划来计算任意两点之间的最短路径 如果普通求最短路径,可以对图进行V次(顶点数)BellmanFord算法. 这样的话时间复杂度为EV^2 如果是稀疏图,则近似于V^3 但是如果是密集图,则时间复杂度会近似达到V^4,这种情况需要优化,这里FloydWarshall通过动态规划进行优化 ,并且使用邻接矩阵来表示图. 实例代码: package org.loda.graph;

  • java实现的各种排序算法代码示例

    折半插入排序 折半插入排序是对直接插入排序的简单改进.此处介绍的折半插入,其实就是通过不断地折半来快速确定第i个元素的 插入位置,这实际上是一种查找算法:折半查找.Java的Arrays类里的binarySearch()方法,就是折半查找的实现,用 于从指定数组中查找指定元素,前提是该数组已经处于有序状态.与直接插入排序的效果相同,只是更快了一些,因 为折半插入排序可以更快地确定第i个元素的插入位置 代码: package interview; /** * @author Administrat

  • Java版超大整数阶乘算法代码详解-10,0000级

    当计算超过20以上的阶乘时,阶乘的结果值往往会很大.一个很小的数字的阶乘结果就可能超过目前个人计算机的整数范围.如果需求很大的阶乘,比如1000以上完全无法用简单的递归方式去解决.在网上我看到很多用C.C++和C#写的一些关于大整数阶乘的算法,其中不乏经典但也有很多粗糙的文章.数组越界,一眼就可以看出程序本身无法运行.转载他人文章的时候,代码倒是仔细看看啊.唉,粗糙.过年了,在家闲来蛋疼,仔细分析分析,用Java实现了一个程序计算超大整数阶乘.思想取自网上,由我个人优化和改进. 这个方法采用"数

  • Java实现8种排序算法的示例代码

    冒泡排序 O(n2) 两个数比较大小,较大的数下沉,较小的数冒起来. public static void bubbleSort(int[] a) { //临时变量 int temp; //i是循环次数,也是冒泡的结果位置下标,5个数组循环5次 for (int i = 0; i < a.length; i++) { //从最后向前面两两对比,j是比较中下标大的值 for (int j = a.length - 1; j > i; j--) { //让小的数字排在前面 if (a[j] <

  • JAVA用递归实现全排列算法的示例代码

    求一个n阶行列式,一个比较简单的方法就是使用全排列的方法,那么简述以下全排列算法的递归实现. 首先举一个简单的例子说明算法的原理,既然是递归,首先说明一下出口条件.以[1, 2]为例 首先展示一下主要代码(完整代码在后面),然后简述 //对数组array从索引为start到最后的元素进行全排列 public void perm(int[]array,int start) { if(start==array.length) { //出口条件 for(int i=0;i<array.length;i

  • 详解Java Fibonacci Search斐波那契搜索算法代码实现

    一, 斐波那契搜索算法简述 斐波那契搜索(Fibonacci search) ,又称斐波那契查找,是区间中单峰函数的搜索技术. 斐波那契搜索采用分而治之的方法,其中我们按照斐波那契数列对元素进行不均等分割.此搜索需要对数组进行排序. 与二进制搜索不同,在二进制搜索中,我们将元素分成相等的两半以减小数组范围-在斐波那契搜索中,我们尝试使用加法或减法来获得较小的范围. 斐波那契数列的公式是: Fibo(N)=Fibo(N-1)+Fibo(N-2) 此系列的前两个数字是Fibo(0) = 0和Fibo

  • Java实现世界上最快的排序算法Timsort的示例代码

    目录 背景 前置知识 指数搜索 二分插入排序 归并排序 Timsort 执行过程 升序运行 几个关键阀值 运行合并 合并条件 合并内存开销 合并优化 背景 Timsort 是一个混合.稳定的排序算法,简单来说就是归并排序和二分插入排序算法的混合体,号称世界上最好的排序算法.Timsort一直是 Python 的标准排序算法.Java SE 7 后添加了Timsort API ,我们从Arrays.sort可以看出它已经是非原始类型数组的默认排序算法了.所以不管是进阶编程学习还是面试,理解 Tim

  • Java实现常见的排序算法的示例代码

    目录 一.优化后的冒泡排序 二.选择排序 三.插入排序 四.希尔排序 五.快速排序 六.随机化快速排序 七.归并排序 八.可处理负数的基数排序 一.优化后的冒泡排序 package com.yzh.sort; /* 冒泡排序 */ @SuppressWarnings({"all"}) public class BubbleSort { public static void BubbleSort(int[]a){ for (int i = 0; i <a.length-1 ; i+

  • Java实现的快速查找算法示例

    本文实例讲述了Java实现的快速查找算法.分享给大家供大家参考,具体如下: 快速查找算法,可以根据想要找的是第几个大的数,每次循环都能固定下来一个数在数组完整排完序之后的位置,每次循环都能定一个数的位置,如果当前固定的数的位置和用户要找的第几个数匹配,则就直接返回.例如我要找第二大的数,如果循环一次固定的数的下标是1,那就是当前需要找的数. 代码如下: // 快速查找算法 public static int quickSelect(int[] arr, int selectIndex) { in

  • java实现的统计字符算法示例

    本文实例讲述了java实现的统计字符算法.分享给大家供大家参考,具体如下: 统计字符: 概述:给定字符串,将它们进行分类,分别的去统计它们的个数及其字符 分类的有:字母 数字 中文 空格 等等 算法思路分析: 分别统计即可: 下面给出代码:(代码仅供参考) package javastudy; public class Testit6 { public static void main(String[] args) { String str = "...天2气 :[1] aA"; //

随机推荐