基于MySQL到MongoDB简易对照表的详解

查询:
MySQL:
SELECT * FROM user
Mongo:
db.user.find()
MySQL:
SELECT * FROM user WHERE name = 'starlee'
Mongo:
db.user.find({‘name' : 'starlee'})
插入:
MySQL:
INSERT INOT user (`name`, `age`) values ('starlee',25)
Mongo:
db.user.insert({‘name' : 'starlee', ‘age' : 25})
如果你想在MySQL里添加一个字段,你必须:
ALTER TABLE user….
但在MongoDB里你只需要:
db.user.insert({‘name' : 'starlee', ‘age' : 25, ‘email' : 'starlee@starlee.com'})
删除:
MySQL:
DELETE * FROM user
Mongo:
db.user.remove({})
MySQL:
DELETE FROM user WHERE age < 30
Mongo:
db.user.remove({‘age' : {$lt : 30}})
$gt : > ; $gte : >= ; $lt : < ; $lte : <= ; $ne : !=
更新:
MySQL:
UPDATE user SET `age` = 36 WHERE `name` = 'starlee'
Mongo:
db.user.update({‘name' : 'starlee'}, {$set : {‘age' : 36}})
MySQL:
UPDATE user SET `age` = `age` + 3 WHERE `name` = 'starlee'
Mongo:
db.user.update({‘name' : 'starlee'}, {$inc : {‘age' : 3}})
MySQL:
SELECT COUNT(*) FROM user WHERE `name` = 'starlee'
Mongo:
db.user.find({‘name' : 'starlee'}).count()
MySQL:
SELECT * FROM user limit 10,20
Mongo:
db.user.find().skip(10).limit(20)
MySQL:
SELECT * FROM user WHERE `age` IN (25, 35,45)
Mongo:
db.user.find({‘age' : {$in : [25, 35, 45]}})
MySQL:
SELECT * FROM user ORDER BY age DESC
Mongo:
db.user.find().sort({‘age' : -1})
MySQL:
SELECT DISTINCT(name) FROM user WHERE age > 20
Mongo:
db.user.distinct(‘name', {‘age': {$lt : 20}})
MySQL:
SELECT name, sum(marks) FROM user GROUP BY name
Mongo:
db.user.group({
key : {‘name' : true},
cond: {‘name' : ‘foo'},
reduce: function(obj,prev) { prev.msum += obj.marks; },
initial: {msum : 0}
});
MySQL:
SELECT name FROM user WHERE age < 20
Mongo:
db.user.find(‘this.age < 20′, {name : 1})
发现很多人在搜MongoDB循环插入数据,下面把MongoDB循环插入数据的方法添加在下面:
for(var i=0;i<100;i++)db.test.insert({uid:i,uname:'nosqlfan'+i});
上面一次性插入一百条数据,大概结构如下:
{ “_id” : ObjectId(“4c876e519e86023a30dde6b8″), “uid” : 55, “uname” : “nosqlfan55″ }
{ “_id” : ObjectId(“4c876e519e86023a30dde6b9″), “uid” : 56, “uname” : “nosqlfan56″ }
{ “_id” : ObjectId(“4c876e519e86023a30dde6ba”), “uid” : 57, “uname” : “nosqlfan57″ }
{ “_id” : ObjectId(“4c876e519e86023a30dde6bb”), “uid” : 58, “uname” : “nosqlfan58″ }
{ “_id” : ObjectId(“4c876e519e86023a30dde6bc”), “uid” : 59, “uname” : “nosqlfan59″ }
{ “_id” : ObjectId(“4c876e519e86023a30dde6bd”), “uid” : 60, “uname” : “nosqlfan60″ }
简易对照表
SQL Statement                                                  Mongo Query Language Statement
CREATE TABLE USERS (a Number, b Number)         implicit; can be done explicitly
INSERT INTO USERS VALUES(1,1)                             db.users.insert({a:1,b:1})
SELECT a,b FROM users                                           db.users.find({}, {a:1,b:1})
SELECT * FROM users                                              db.users.find()
SELECT * FROM users WHERE age=33                      db.users.find({age:33})
SELECT a,b FROM users WHERE age=33                   db.users.find({age:33}, {a:1,b:1})
SELECT * FROM users WHERE age=33 ORDER BY name                db.users.find({age:33}).sort({name:1})
SELECT * FROM users WHERE age>33                     db.users.find({'age':{$gt:33}})})
SELECT * FROM users WHERE age<33                     db.users.find({'age':{$lt:33}})})
SELECT * FROM users WHERE name LIKE "%Joe%"                                   db.users.find({name:/Joe/})
SELECT * FROM users WHERE name LIKE "Joe%"                               db.users.find({name:/^Joe/})
SELECT * FROM users WHERE age>33 AND age<=40                                   db.users.find({'age':{$gt:33,$lte:40}})})
SELECT * FROM users ORDER BY name DESC                                   db.users.find().sort({name:-1})
CREATE INDEX myindexname ON users(name)                                   db.users.ensureIndex({name:1})
CREATE INDEX myindexname ON users(name,ts DESC)                                   db.users.ensureIndex({name:1,ts:-1})
SELECT * FROM users WHERE a=1 and b='q'                                   db.users.find({a:1,b:'q'})
SELECT * FROM users LIMIT 10 SKIP 20                                   db.users.find().limit(10).skip(20)
SELECT * FROM users WHERE a=1 or b=2                          db.users.find( { $or : [ { a : 1 } , { b : 2 } ] } )
SELECT * FROM users LIMIT 1                                          db.users.findOne()
EXPLAIN SELECT * FROM users WHERE z=3                                   db.users.find({z:3}).explain()
SELECT DISTINCT last_name FROM users                                   db.users.distinct('last_name')
SELECT COUNT(*y) FROM users                                            db.users.count()
SELECT COUNT(*y) FROM users where AGE > 30                             db.users.find({age: {'$gt': 30}}).count()
SELECT COUNT(AGE) from users                                       db.users.find({age: {'$exists': true}}).count()
UPDATE users SET a=1 WHERE b='q'                                   db.users.update({b:'q'}, {$set:{a:1}}, false, true)
UPDATE users SET a=a+2 WHERE b='q'                                   db.users.update({b:'q'}, {$inc:{a:2}}, false, true)
DELETE FROM users WHERE z="abc"                                    db.users.remove({z:'abc'});
###################################################
一、操作符
操作符相信大家肯定都知道了,就是等于、大于、小于、不等于、大于等于、小于等于,但是在mongodb里不能直接使用这些操作符。在mongodb里的操作符是这样表示的:
(1) $gt > (大于)   
(2) $lt  < (小于)   
(3) $gte  >= (大于等于)
(4) $lt  <= (小于等于)  
(5) $ne  != (不等于) 
(6) $in  in (包含)      
(7) $nin  not in (不包含)  
(8) $exists  exist (字段是否存在) 
(9) $inc  对一个数字字段field增加value
(10) $set  就是相当于sql的set field = value
(11) $unset  就是删除字段  
(12) $push  把value追加到field里面去,field一定要是数组类型才行,如果field不存在,会新增一个数组类型加进去
(13) $pushAll  同$push,只是一次可以追加多个值到一个数组字段内
(14) $addToSet  增加一个值到数组内,而且只有当这个值不在数组内才增加。
(15) $pop  删除最后一个值:{ $pop : { field : 1 } }删除第一个值:{ $pop : { field : -1 } }注意,只能删除一个值,也就是说只能用1或-1,而不能用2或-2来删除两条。mongodb 1.1及以后的版本才可以用
(16) $pull  从数组field内删除一个等于value值
(17) $pullAll  同$pull,可以一次删除数组内的多个值
(18) $ 操作符  是他自己的意思,代表按条件找出的数组里面某项他自己。这个比较坳口,就不说了。
二、CURD 增、改、读、删
增加


代码如下:

db.collection->insert({'name' => 'caleng', 'email' => 'admin#admin.com'});

是不是灰常简单呀,对就是这么简单,它没有字段的限制,你可以随意起名,并插入数据


代码如下:

db.collection.update( { "count" : { $gt : 1 } } , { $set : { "test2" : "OK"} } ); 只更新了第一条大于1记录
db.collection.update( { "count" : { $gt : 3 } } , { $set : { "test2" : "OK"} },false,true ); 大于3的记录 全更新了
db.collection.update( { "count" : { $gt : 4 } } , { $set : { "test5" : "OK"} },true,false ); 大于4的记录 只加进去了第一条
db.collection.update( { "count" : { $gt : 5 } } , { $set : { "test5" : "OK"} },true,true ); 大于5的记录 全加进去

查询


代码如下:

db.collection.find(array('name' => 'bailing'), array('email'=>'email@qq.com'))
db.collection.findOne(array('name' => 'bailing'), array('email''email@qq.com'))

大家可以看到查询我用了两种不同的写法,这是为什么,其实这跟做菜是一样的,放不同的调料,炒出的菜是不同的味道。下面给大家说一下,这两种调料的不同作用。
findOne()只返回一个文档对象,find()返回一个集合列表。
也就是说比如,我们只想查某一条特定数据的详细信息的话,我们就可以用findOne();
如果想查询某一组信息,比如说一个新闻列表的时候,我们就可以作用find();
那么我想大家这时一定会想到我想对这一个列表排序呢,no problem mongodb会为您全心全意服务


代码如下:

db.collection.find().sort({age:1}); //按照age正序排列
db.collection.find().sort({age:-1}); //按照age倒序排列
db.collection.count(); //得到数据总数
db.collection.limit(1); //取数据的开始位置
db.collection.skip(10); //取数据的结束位置
//这样我们就实现了一个取10条数据,并排序的操作。

删除
删除有两个操作 remove()和drop()


代码如下:

db.collection.remove({"name",'jerry'}) //删除特定数据
db.collection.drop() //删除集合内的所有数据

distinct操作


代码如下:

db.user.distinct('name', {'age': {$lt : 20}})

2. 熟悉MongoDB的数据操作语句,类sql
数据库操作语法
mongo --path
db.AddUser(username,password) 添加用户
db.auth(usrename,password) 设置数据库连接验证
db.cloneDataBase(fromhost) 从目标服务器克隆一个数据库
db.commandHelp(name) returns the help for the command
db.copyDatabase(fromdb,todb,fromhost) 复制数据库fromdb---源数据库名称,todb---目标数据库名称,fromhost---源数据库服务器地址
db.createCollection(name,{size:3333,capped:333,max:88888}) 创建一个数据集,相当于一个表
db.currentOp() 取消当前库的当前操作
db.dropDataBase() 删除当前数据库
db.eval(func,args) run code server-side
db.getCollection(cname) 取得一个数据集合,同用法:db['cname'] or db.cname
db.getCollenctionNames() 取得所有数据集合的名称列表
db.getLastError() 返回最后一个错误的提示消息
db.getLastErrorObj() 返回最后一个错误的对象
db.getMongo() 取得当前服务器的连接对象get the server connection object
db.getMondo().setSlaveOk() allow this connection to read from then nonmaster membr of a replica pair
db.getName() 返回当操作数据库的名称
db.getPrevError() 返回上一个错误对象
db.getProfilingLevel() ?什么等级
db.getReplicationInfo() ?什么信息
db.getSisterDB(name) get the db at the same server as this onew
db.killOp() 停止(杀死)在当前库的当前操作
db.printCollectionStats() 返回当前库的数据集状态
db.printReplicationInfo()
db.printSlaveReplicationInfo()
db.printShardingStatus() 返回当前数据库是否为共享数据库
db.removeUser(username) 删除用户
db.repairDatabase() 修复当前数据库
db.resetError()
db.runCommand(cmdObj) run a database command. if cmdObj is a string, turns it into {cmdObj:1}
db.setProfilingLevel(level) 0=off,1=slow,2=all
db.shutdownServer() 关闭当前服务程序
db.version() 返回当前程序的版本信息
数据集(表)操作语法
db.linlin.find({id:10}) 返回linlin数据集ID=10的数据集
db.linlin.find({id:10}).count() 返回linlin数据集ID=10的数据总数
db.linlin.find({id:10}).limit(2) 返回linlin数据集ID=10的数据集从第二条开始的数据集
db.linlin.find({id:10}).skip(8) 返回linlin数据集ID=10的数据集从0到第八条的数据集
db.linlin.find({id:10}).limit(2).skip(8) 返回linlin数据集ID=1=的数据集从第二条到第八条的数据
db.linlin.find({id:10}).sort() 返回linlin数据集ID=10的排序数据集
db.linlin.findOne([query]) 返回符合条件的一条数据
db.linlin.getDB() 返回此数据集所属的数据库名称
db.linlin.getIndexes() 返回些数据集的索引信息
db.linlin.group({key:...,initial:...,reduce:...[,cond:...]})
db.linlin.mapReduce(mayFunction,reduceFunction,<optional params>)
db.linlin.remove(query) 在数据集中删除一条数据
db.linlin.renameCollection(newName) 重命名些数据集名称
db.linlin.save(obj) 往数据集中插入一条数据
db.linlin.stats() 返回此数据集的状态
db.linlin.storageSize() 返回此数据集的存储大小
db.linlin.totalIndexSize() 返回此数据集的索引文件大小
db.linlin.totalSize() 返回些数据集的总大小
db.linlin.update(query,object[,upsert_bool]) 在此数据集中更新一条数据
db.linlin.validate() 验证此数据集
db.linlin.getShardVersion() 返回数据集共享版本号

(0)

相关推荐

  • python连接MySQL、MongoDB、Redis、memcache等数据库的方法

    用Python写脚本也有一段时间了,经常操作数据库(MySQL),现在就整理下对各类数据库的操作,如后面有新的参数会补进来,慢慢完善. 一,python 操作 MySQL:详情见:[apt-get install python-mysqldb] 复制代码 代码如下: #!/bin/env python# -*- encoding: utf-8 -*-#-------------------------------------------------------------------------

  • MongoDB与MySQL常用操作语句对照

    一.MongoDB对MySQL常用的SQL语句对应的实现 复制代码 代码如下: -------------- MySQL: SELECT * FROM user Mongo: db.user.find() -------------- MySQl: SELECT * FROM user WHERE name = 'foobar' Mongo: db.user.find({ 'name' : 'foobar' }) -------------- MySql: INSERT INTO user ('

  • MySQL和MongoDB设计实例对比分析

    下面通过一个设计实例对比一下二者:假设我们正在维护一个手机产品库,里面除了包含手机的名称,品牌等基本信息,还包含了待机时间,外观设计等参数信息,应该如何存取数据呢? 如果使用MySQL的话,应该如何存取数据呢? 如果使用MySQL话,手机的基本信息单独是一个表,另外由于不同手机的参数信息差异很大,所以还需要一个参数表来单独保存. 复制代码 代码如下: CREATE TABLE IF NOT EXISTS `mobiles` ( `id` int(10) unsigned NOT NULL AUT

  • Python中MySQL数据迁移到MongoDB脚本的方法

    MongoDB简介 MongoDB 是一个基于分布式文件存储的数据库.由 C++ 语言编写.旨在为 WEB 应用提供可扩展的高性能数据存储解决方案. MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的. MongoDB是一个文档数据库,在存储小文件方面存在天然优势.随着业务求的变化,需要将线上MySQL数据库中的行记录,导入到MongoDB中文档记录. 一.场景:线上MySQL数据库某表迁移到MongoDB,字段无变化. 二.Python

  • MongoDB与MySQL的操作对比表及区别介绍

    MySQL与MongoDB都是开源的常用数据库,但是MySQL是传统的关系型数据库,MongoDB则是非关系型数据库,也叫文档型数据库,是一种NoSQL的数据库.它们各有各的优点,关键是看用在什么地方.所以我们所熟知的那些SQL(全称Structured Query Language)语句就不适用于MongoDB了,因为SQL语句是关系型数据库的标准语言.   以我们公司项目为例,在早期的项目中,都在使用关系型数据库,用过SQLServer,Oracle,DB2,后来全部转向Mysql,原因很简

  • MySQL与Mongo简单的查询实例代码

    首先在这里我就不说关系型数据库与非关系型数据库之间的区别了(百度上有很多)直接切入主题 我想查询的内容是这样的:分数大于0且人名是bob或是jake的总分数 平均分数 最小分数 最大分数 计数 举这个实例来试试用MySQL和mongodb分别写一个查询 首先我们先做一些准备工作 MySQL的数据库结构如下 CREATE TABLE `new_schema`.`demo` ( `id` INT NOT NULL, `person` VARCHAR(45) NOT NULL, `score` VAR

  • mongodb与mysql命令详细对比

    传统的关系数据库一般由数据库(database).表(table).记录(record)三个层次概念组成,MongoDB是由数据库(database).集合(collection).文档对象(document)三个层次组成.MongoDB对于关系型数据库里的表,但是集合中没有列.行和关系概念,这体现了模式自由的特点. MySQL MongoDB 说明 mysqld mongod 服务器守护进程 mysql mongo 客户端工具 mysqldump mongodump 逻辑备份工具 mysql

  • 基于MySQL到MongoDB简易对照表的详解

    查询:MySQL:SELECT * FROM userMongo:db.user.find()MySQL:SELECT * FROM user WHERE name = 'starlee'Mongo:db.user.find({'name' : 'starlee'})插入:MySQL:INSERT INOT user (`name`, `age`) values ('starlee',25)Mongo:db.user.insert({'name' : 'starlee', 'age' : 25}

  • 基于mysql时间处理函数的应用详解

    DAYOFWEEK(date) 返回日期date的星期索引(1=星期天,2=星期一, --7=星期六).这些索引值对应于ODBC标准.  mysql> select DAYOFWEEK('1998-02-03');  -> 3 WEEKDAY(date)  返回date的星期索引(0=星期一,1=星期二, --6= 星期天).  mysql> select WEEKDAY('1997-10-04 22:23:00');  -> 5  mysql> select WEEKDAY

  • 基于 Mysql 实现一个简易版搜索引擎

    目录 基于 Mysql 实现一个搜索引擎 一.ngram 全文解析器 二.创建全文索引 1.建表时创建全文索引 2.通过 alter table 方式 3.通过 create index 方式 三.检索方式 1.自然语言检索(NATURAL LANGUAGE MODE) 四.与 Like 对比 基于 Mysql 实现一个搜索引擎 前言: 其实 Mysql 很早就支持全文索引了,只不过一直只支持英文的检索,从5.7.6 版本开始,Mysql 就内置了 ngram 全文解析器,用来支持中文.日文.韩

  • MySQL两种临时表的用法详解

    外部临时表 通过CREATE TEMPORARY TABLE 创建的临时表,这种临时表称为外部临时表.这种临时表只对当前用户可见,当前会话结束的时候,该临时表会自动关闭.这种临时表的命名与非临时表可以同名(同名后非临时表将对当前会话不可见,直到临时表被删除). 内部临时表 内部临时表是一种特殊轻量级的临时表,用来进行性能优化.这种临时表会被MySQL自动创建并用来存储某些操作的中间结果.这些操作可能包括在优化阶段或者执行阶段.这种内部表对用户来说是不可见的,但是通过EXPLAIN或者SHOW S

  • MySQL binlog中的事件类型详解

    MySQL binlog记录的所有操作实际上都有对应的事件类型的,譬如STATEMENT格式中的DML操作对应的是QUERY_EVENT类型,ROW格式下的DML操作对应的是ROWS_EVENT类型. 首先,看看源码中定义的事件类型 源码位置:mysql-5.7.14/libbinlogevents/include/binlog_event.h enum Log_event_type { /** Every time you update this enum (when you add a ty

  • 基于Tomcat安全配置与性能优化详解

    Tomcat 是 Apache软件基金会下的一个免费.开源的WEB应用服务器,它可以运行在 Linux 和 Windows 等多个平台上,由于其性能稳定.扩展性好.免费等特点深受广大用户喜爱.目前,很多互联网应用和企业应用都部署在 Tomcat 服务器上,比如我们公司,哈. 之前我们 tomcat 都采用的是默认的配置,因此在安全方面还是有所隐患的.上周对测试环境的所有服务器的tomcat都做了安全优化,其间也粗略做了一些性能优化,这里就简单记录分享下! 一.版本安全 升级当前的tomcat版本

  • Mysql Binlog数据查看的方法详解

    binlog介绍 binlog,即二进制日志,它记录了数据库上的所有改变. 改变数据库的SQL语句执行结束时,将在binlog的末尾写入一条记录,同时通知语句解析器,语句执行完毕. binlog格式 基于语句,无法保证所有语句都在从库执行成功,比如update ... limit 1; 基于行,将每一次改动记为binlog中的一行.在执行一个特别复杂的update或者delete操作时,基于行的格式会有优势. 登录到mysql查看binlog 只查看第一个binlog文件的内容 show bin

  • mongodb driver使用代码详解

    MongoDB 是一个基于分布式文件存储的数据库.由 C++ 语言编写.旨在为 WEB 应用提供可扩展的高性能数据存储解决方案. MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的. 0 前言 全是干货的技术殿堂 文章收录在我的 GitHub 仓库,欢迎Star/fork: Java-Interview-Tutorial https://github.com/Wasabi1234/Java-Interview-Tutorial mongo

  • MySQL定时任务(EVENT事件)如何配置详解

    一.事件(EVENT)是干什么的   自MySQL5.1.6起,增加了一个非常有特色的功能 - 事件调度器(Event Scheduler),可以用做定时执行某些特定任务(例如:删除记录.数据统计报告.数据备份等等),来取代原先只能由操作系统的计划任务来执行的工作.   值得一提的是MySQL的事件调度器可以精确到每秒钟执行一个任务,而操作系统的计划任务(如:Linux的cron)只能精确到每分钟执行一次.对于一些对数据实时性要求比较高的应用(例如:股票.赔率.比分等)就非常适合.   事件有时

  • 基于docker 搭建Prometheus+Grafana的过程详解

    一.介绍Prometheus Prometheus(普罗米修斯)是一套开源的监控&报警&时间序列数据库的组合,起始是由SoundCloud公司开发的.随着发展,越来越多公司和组织接受采用Prometheus,社会也十分活跃,他们便将它独立成开源项目,并且有公司来运作.Google SRE的书内也曾提到跟他们BorgMon监控系统相似的实现是Prometheus.现在最常见的Kubernetes容器管理系统中,通常会搭配Prometheus进行监控. Prometheus基本原理是通过HTT

随机推荐