索引的原理及索引建立的注意事项

聚集索引,数据实际上是按顺序存储的,数据页就在索引页上。就好像参考手册将所有主题按顺序编排一样。一旦找到了所要搜索的数据,就完成了这次搜索,对于非聚集索引,索引是安全独立于数据本身结构的,在索引中找到了寻找的数据,然后通过指针定位到实际的数据。

SQL Server中的索引使用标准的B-树来存储他们的信息,如下图所示,B-树通过查找索引中的一个关键之来提供对于数据的快速访问,B-树以相似的键记录聚合在一起,B不代表二叉(binary),而是代表balanced(平衡的),而B-树的一个核心作用就是保持树的平衡。同伙向下遍历这棵树以找到一个数值并定位记录。因为树是平衡的,所以寻找任何记录都只需要等量的资源,而且获取的速度总是一致的—因为从根索引叶索引都具有相同的深度。

索引的中间层次是根据表的行数一级索引行的大小而变化的,如果使用一个较长的键(KEY)来创建索引,一个分页上就只容纳较少的条目,因而索引就需要更多分页(或者说更多层),页越多那么查找就需要话费相对较长的时间来找到所需要的信息,索引就可能不太有用了。

聚集索引

聚集索引的叶级别不仅包含了索引键,还包含了数据页。另一种说法数据本身也是聚集索引的一部分,聚集索引基于键值保持表中的数据有序,表中的数据页是通过一个被称作页链(page chain)的双向链接表来维护的,由于实际的数据页的页链只能按一种方式排序,因此一张表只能拥有一个聚集索引。
这里可能有一个误区,有很多介绍SQL Server索引的文档会告诉读者:聚集索引按照排序顺序(sorted order)物理地存储数据。如果以为物理存储就是磁盘本身的话就会产生误解。试想如果聚集索引需要按照特定顺序在实际的磁盘上维护数据的话,那么任何修改操作都将会产生相当高昂的代价。当一个页变满了需要一分为二的时候,所有后续页面上的数据都必须向后移动。聚集索引中的排序顺序(sorted order)仅仅表示数据页链在逻辑上是有序的。
大多数表都应该需要一个聚集索引。优化器非常倾向于采用聚集索引,因为聚集索引能够直接在叶级别找到数据。由于定义了数据的逻辑顺序,聚集索引能够特别快的访问针对范围值的查询,查询优化器能够发现只有某一段范围的数据页需要扫描。

非聚集索引

对于非聚集索引,叶级别不包含全部的数据。除了键值之外,每个叶级别(树的最底层)中的索引行包含了一个书签(bookmark),告诉SQL Server可以在那里找到与索引键相应的数据行。一个书签可能有两种形式。如果表上存在聚集索引,书签就是相应的数据行的聚集索引键。如果彪是堆(heap)结构,书签就是一个行表示(row identifier,RID),以“文件号:页号:槽号”的格式来定位实际的行。
主键(PRIMARY KEY)与聚集索引(CLUSTER INDEX)
严格来说,主键与聚集索引没有任何关系,如果要说有话,那就是表中没有聚集索引的时候,创建的主键默认就是聚集索引(除非有特别设置为NOCLUSTER)。
在主键与聚集索引的处理方面,注意以下事项:
1、主键不与聚集索引分离
2、聚集索引键列尽量避免使用int之外的数据类型
3、尽量避免使用复合主键

创建索引时的注意事项

1、始终包含聚集索引
当表中不包含聚集索引时,表中的数据是无序的,这会降低数据检索效率。即使通过索引缩小了数据检索的范围,但由于数据本身是无序的,当从表中提取实际数据时,会产生频繁的定位问题,这也使得SQL Server基本上不会使用无聚集索引表中的索引来检索数据。
2、保证聚集索引唯一
由于聚集索引是非聚集索引的行定位器,如果它不唯一,则会使行定位器中包含辅助数据,同时也导致从表中提取数据时,需要借助行定位器中的辅助数据来定位,这会降低处理效率。
3、保证聚集索引最小
每个聚集键值都是所有非聚集索引的叶结点记录,它越小,意味着每个非聚集索引的索引叶包含的有效数据越多,这对于提升索引效率很有好处。
4、覆盖索引
覆盖索引是指索引中的列包含了数据处理中涉及的所有列,覆盖索引相当原始表的一个子集,由于这个子集中包含了数据处理涉及的所有列,因此操作这个子集就可以满足数据处理需要。一般而言,如果大多数处理都只涉及某个大表的某些列,可以考虑为这些列建立覆盖索引。
覆盖索引的建立方法是将要包含的列中的关键列做为索引键列,将其他列做为索引的包含列(使用索引创建语句中的INCLUDE子句)。
5、适量的索引
当数据发生变化时,SQL Server会同步维护相关索引中的数据,过多的索引会加影响数据变更的处理效率。因此,只应该在经常使用的列上建立索引。
适量的索引还体现在对索引列的组合方式的控制上。例如,如果有两个列col1和col2,这两个列的组合会产生三种使用情况:单独使用col1、单独使用col2及同时使用col1和col2。如果有为每种情况都建立索引,则需要建立三个索引。但也可以只建立一个复合索引(col1, col2),这样能够依次满足col1+col2、col1、col2这三种方式的查询,其中,col2利用这个查询会比较勉强(还要配合单独的统计),可以视实际情况确定是否需要为col2建立单独的索引。
特别注意:
不要建立重复索引,目前最常见的重复索引是单独为某个列建立主键和聚集索引
与直接从表中提取数据相比,根据索引检索数据,多了一个索引检索的过程,这个过程要求能够尽量缩小数据检索范围,并且使用最少的时间,这样才能真正保证能够通过索引提高数据检索效率。
实现上述目的,对于索引键列的选择,应该遵循如下原则:
选择性原则
选择性是满足条件的记录占总记录数的百分比,这个比率应该尽可能低,这样才能保证通过索引扫描后,只需要从基础表提取很少的数据。
如果这个比率偏高,则不应该考虑在此列上建立索引。
数据密度原则
数据密度是指列值唯一的记录占总记录数的百分比,这个比率越高,则说明此列越适合建立索引。
在考虑数据密度的时候,还要注意数据分布的问题,只有经常检索的密度高时,才适合建立索引。例如,如果一张表有10万记录,虽然某个列不重复的记录有9万条,但如果经常检索的2万条记录,其不重复的列值才几十条的话,这个列是不太适合建立索引的。另一种情况是,整体数据密度不大,但经常检索的数据的密度大,例如订单的状态,一般来说,订单的状态就几种,但已经Close的订单往往占整个数据的绝大部分,但数据处理的时候,基本上都是检索未Close的订单,这种情况下,为订单的状态列建立索引还是比较有效的(SQL Server 2008中,可以为这种列建立具有更佳效果的筛选索引)。
6、索引键列大小
一般不宜为超过100Byte的列建立索引。
7、复合索引键列顺序
在索引中,索引的顺序主要由索引中的每一个键列确定,因此,对于复合索引,索引中的列顺序是很重要的,应该优先把数据密度大,选择性列,存储空间小的列放在索引键列的前面。

(0)

相关推荐

  • SQLServer2005重建索引前后对比分析

    在做维护项目的时,我们经常会遇到索引维护的问题,通过语句,我们就可以判断某个表的索引是否需要重建. 执行一下语句:先分析表的索引 分析表的索引建立情况:DBCC showcontig('Table') DBCC SHOWCONTIG 正在扫描 'Table'' 表... 表: 'Table'' (53575229):索引 ID: 1,数据库 ID: 14 已执行 TABLE 级别的扫描. - 扫描页数................................: 228 - 扫描区数....

  • sqlserver索引的原理及索引建立的注意事项小结

    聚集索引,数据实际上是按顺序存储的,数据页就在索引页上.就好像参考手册将所有主题按顺序编排一样.一旦找到了所要搜索的数据,就完成了这次搜索,对于非聚集索引,索引是安全独立于数据本身结构的,在索引中找到了寻找的数据,然后通过指针定位到实际的数据. SQL Server中的索引使用标准的B-树来存储他们的信息,如下图所示,B-树通过查找索引中的一个关键之来提供对于数据的快速访问,B-树以相似的键记录聚合在一起,B不代表二叉(binary),而是代表balanced(平衡的),而B-树的一个核心作用就

  • 索引的原理及索引建立的注意事项

    聚集索引,数据实际上是按顺序存储的,数据页就在索引页上.就好像参考手册将所有主题按顺序编排一样.一旦找到了所要搜索的数据,就完成了这次搜索,对于非聚集索引,索引是安全独立于数据本身结构的,在索引中找到了寻找的数据,然后通过指针定位到实际的数据. SQL Server中的索引使用标准的B-树来存储他们的信息,如下图所示,B-树通过查找索引中的一个关键之来提供对于数据的快速访问,B-树以相似的键记录聚合在一起,B不代表二叉(binary),而是代表balanced(平衡的),而B-树的一个核心作用就

  • 深入解析MySQL索引的原理与优化策略

    目录 索引的概念 索引的原理 索引的类型 索引的使用 索引的使用方式 注意事项 索引优化技巧 索引的概念 MySQL索引是一种用于加速数据库查询的数据结构,它类似于书籍的目录,能够快速指导我们找到需要的信息.MySQL索引可以根据一定的算法和数据结构进行排序和存储,从而实现高效的数据查找和访问.在数据库中,索引可以加速数据的查询和更新操作,提高系统性能. MySQL支持多种索引类型,常见的包括B-tree索引.哈希索引和全文索引等.其中,B-tree索引是最常用的一种,它是一种平衡树结构,可以将

  • MySQL数据库优化之索引实现原理与用法分析

    本文实例讲述了MySQL数据库优化之索引实现原理与用法.分享给大家供大家参考,具体如下: 索引 什么是索引 索引用来快速地寻找那些具有特定值的记录,所有MySQL索引都以B-树的形式保存.如果没有索引,执行查询时MySQL必须从第一个记录开始扫描整个表的所有记录,直至找到符合要求的记录.表里面的记录数量越多,这个操作的代价就越高.如果作为搜索条件的列上已经创建了索引,MySQL无需扫描任何记录即可迅速得到目标记录所在的位置.如果表有1000个记录,通过索引查找记录至少要比顺序扫描记录快100倍.

  • MySQL索引失效原理

    目录 1.索引失效原因 2.再来看看哪些情况会破坏索引的有序性. - 对索引字段做函数操作 - 隐式类型转换 - 隐式字符编码转换 3.总结 1.索引失效原因 首先看看哪些情况下,将会导致查找不能利用索引的有序性. 假设一个表test中有a,b,c,d四个字段,c是主键. 在a,b字段上建立联合索引(a,b):CREATE index idx_a_b on test(a,b); B+树联合索引.JPG 可以得到的规律是:优先按a字段从小到大排序,a字段相等的按b字段从小到大排序: 分析以下情况,

  • 深入理解 MySQL 索引底层原理

    目录 Mysql 索引底层数据结构选型 哈希表(Hash) 二叉查找树(BST) AVL 树和红黑树 B 树 5.B+树 Innodb 引擎和 Myisam 引擎的实现 MyISAM 引擎的底层实现(非聚集索引方式) Innodb 引擎的底层实现(聚集索引方式) 一步一步推导出 Mysql 索引的底层数据结构. Mysql 作为互联网中非常热门的数据库,其底层的存储引擎和数据检索引擎的设计非常重要,尤其是 Mysql 数据的存储形式以及索引的设计,决定了 Mysql 整体的数据检索性能. 我们知

  • SqlServer索引的原理与应用详解

    索引的概念 索引的用途:我们对数据查询及处理速度已成为衡量应用系统成败的标准,而采用索引来加快数据处理速度通常是最普遍采用的优化方法. 索引是什么:数据库中的索引类似于一本书的目录,在一本书中使用目录可以快速找到你想要的信息,而不需要读完全书.在数据库中,数据库程序使用索引可以重啊到表中的数据,而不必扫描整个表.书中的目录是一个字词以及各字词所在的页码列表,数据库中的索引是表中的值以及各值存储位置的列表. 索引的利弊:查询执行的大部分开销是I/O,使用索引提高性能的一个主要目标是避免全表扫描,因

  • SQL Server索引的原理深入解析

    前言 此文是我之前的笔记整理而来,以索引为入口进行探讨相关数据库知识(又做了修改以让人更好消化).SQL Server接触不久的朋友可以只看以下蓝色字体字,简单有用节省时间:如果是数据库基础不错的朋友,可以全看,欢迎探讨. 索引的概念 索引的用途:我们对数据查询及处理速度已成为衡量应用系统成败的标准,而采用索引来加快数据处理速度通常是最普遍采用的优化方法. 索引是什么:数据库中的索引类似于一本书的目录,在一本书中使用目录可以快速找到你想要的信息,而不需要读完全书.在数据库中,数据库程序使用索引可

  • 深入讲解MySQL Innodb索引的原理

    引言 回想四年前,我在学习mysql的索引这块的时候,老师在讲索引的时候,是像下面这么说的 索引就像一本书的目录.而当用户通过索引查找数据时,就好比用户通过目录查询某章节的某个知识点.这样就帮助用户有效地提高了查找速度.所以,使用索引可以有效地提高数据库系统的整体性能. 嗯,这么说其实也对.但是呢,大家看完这种说法,其实可能还是觉得太抽象了!因此呢,我还想再深入的细说一下,所以就有了此文! 需要说明的是,我说的内容只在Mysql的Innodb引擎中是成立的.在Sql Server.oracle.

  • Mysql执行原理之索引合并详解

    Mysql执行原理之索引合并详解 我们前边说过MySQL在一般情况下执行一个查询时最多只会用到单个二级索引,但存在有特殊情况,在这些特殊情况下也可能在一个查询中使用到多个二级索引,MySQL中这种使用到多个索引来完成一次查询的执行方法称之为:索引合并/index merge,在前面的成本计算中我们说到过这个概念:“我们需要分别分析单独使用这些索引执行查询的成本,最后还要分析是否可能使用到索引合并”.其实optimizer trace输出的文本中就有这个片段: 具体的索引合并算法有下边三种. In

随机推荐