Python和Perl绘制中国北京跑步地图的方法

当你在一个城市,穿越大街小巷,跑步跑了几千公里之后,一个显而易见的想法是,我到底和之前比快了多少,跑量有何变化,如果能把在这个城市的所有路线全部画出来,会是怎样的景象呢?

1.数据来源:益动GPS

文章代码比较多,为了不吊人胃口,先看看最终效果:

[/code]

首先需要有原始数据信息,手机上众多跑步软件提供了详细的记录,但它们共同的问题是不允许自由导入导出(可能是为了用户粘性吧)。因此有一块智能运动手表应该是不二之选。我的是Garmin Fenix3,推荐一下:

益动GPS算是业界良心了,能够同步咕咚,Garmin手表,悦跑圈的数据,因此我将其作为一个入口,抓取所有的GPS数据。

至于如何同步,可参考网站上的相关介绍,下面是我登录该网站后的截图:

http://edooon.com/user/5699607196/record/15414378

随便点进去以后,就可以看到导出路线的按钮:

无比坑爹的是,它不提供批量导出的按钮,几百条记录,依次导出都累死了。于是考虑用代码来编辑吧。

2. 获取益动网站上的数据

登录之后,可以看出它是动态加载,当滚轮滚到最下时,自动加载后面的内容。本来是应该嗅探和分析http请求的,后来懒惰了。当拖到底,全部加载完毕后,保存了当前的html文件。

接下来就是解析这个Html,基本上是通过XPath的来做的。有经验的同学看了下图就都明白了:

图中高亮的部分,就是要下载gpx文件的实际地址。我们将其保存在urllist中。同时,元数据被保存在json文件里。

folder = u'D:/buptzym的同步盘/百度云/我的文档/数据分析/datasets/rungps/';
cookie='JSESSIONID=69DF607B71B1F14AFEC090F520B14B55; logincookie=5699607196$6098898D08E533587E82B33DD9D02196; persistent_cookie=5699607196$42C885AD38F59DCA407E09C95BE1A60B; uname_forloginform="buptzym@qq.com"; __utma=54733311.82935663.1447906150.1447937410.1456907433.7; __utmb=54733311.5.10.1456907433; __utmc=54733311; __utmz=54733311.1456907433.7.3.utmcsr=baidu|utmccn=(organic)|utmcmd=organic; cookie_site=auto'
userid='5699607196';
f = codecs.open(folder + 'desert.htm', 'r', 'utf-8');
html = f.read();
f.close();
root = etree.HTML(html)
tree = etree.ElementTree(root);
listnode=tree.xpath('//*[@id="feedList"]');
numre=re.compile(u'骑行|跑步|公里|,|耗时|消耗|大卡');
urllists=[]
records=[];
for child in listnode[0].iterchildren():
record={};
temp=child.xpath('div[2]/div[1]/a[2]')
if len(temp)==0:
continue;
source= temp[0].attrib['href'];
record['id']=source.split('/')[-1];
info=temp[0].text;
numinfo= numre.split(info);
if len(numinfo)<6:
continue;
record['type']= info[0:2];
record['distance']= numinfo[1];
record['hot']=numinfo[6];
urllists.append('http://edooon.com/user/%s/record/export?type=gpx&id=%s' % (userid, record['id'])); 

值得注意的是,因为下载时需要cookie,因此读者需要将自己在益动GPS的userid和登录的cookie都替换掉。

接下来就是下载的过程,获取导出数据按钮的URL的XPath,构造一个带cookie的请求,然后保存文件即可,非常容易。

opener = urllib.request.build_opener()
opener.addheaders.append(('Cookie', cookie));
path='//*[@id="exportList"]/li[1]/a';
for everyURL in urllists:
id = everyURL.split('=')[-1];
print(id);
url='http://edooon.com/user/%s/record/%s' % (userid, id);
f = opener.open(url);
html = f.read();
f.close();
root = etree.HTML(html)
tree = etree.ElementTree(root);
fs = str(tree.xpath(path)[0]);
if fs is None:
continue;
furl = 'http://edooon.com/user/%s/record/%s' % (userid, fs);
f = opener.open(furl);
html = f.read();
f.close();
filename=folder+'id'+'.gpx';
xmlfile = codecs.open(filename, 'wb');
xmlfile.write(html);
xmlfile.close(); 

之后,我们便保存了大约300多个gpx文件

3. 解析gpx数据

所谓gpx数据,是一种通用规范的GPS数据格式,详细的资料可自行搜索。

我们需要使用python的gpx解析器, gpxpy是个好选择,使用

pip3 install gpxpy 即可安装。

gpxpy提供了丰富的接口,当然为了统计,我们只需要提取一部分数据:

def readgpx(x):
file= open(dir+x+'.gpx','r')
txt=file.read()
gpx=gpxpy.parse(txt)
mv=gpx.get_moving_data()
dat= {'移动时间':mv.moving_time,'静止时间':mv.stopped_time,'移动距离':mv.moving_distance,'暂停距离':mv.stopped_distance,'最大速度':mv.max_speed};
dat['总时间']=(gpx.get_duration())
dat['id']=str(x)
updown=gpx.get_uphill_downhill()
dat['上山']=(updown.uphill);
dat['下山']=(updown.downhill)
timebound=gpx.get_time_bounds();
dat['开始时间']=(timebound.start_time)
dat['结束时间']=(timebound.end_time)
p=gpx.get_points_data()[0]
dat['lat']=p.point.latitude
dat['lng']=p.point.longitude
file.close()
return dat 

readgpx函数会读取文件名x,并将一个字典返回。并得到类似下面的一张表:

因为我们只需要绘制北京的区域,因此需要一个坐标表达式筛掉北京之外的地区。筛选代码使用了pandas,在附件里有更详细的代码。

exceptids=详细[(详细.lng<116.1)|(详细.lng>116.7)|(详细.lat<39.9)|(详细.lat>40.1)].id

def filtercity(r):
sp=r.split('/')[-1].split('.')
if sp[1]!='gpx':
return False;
if sp[0] in exceptids.values:
return False;
return True;
bjids= [r for r in gpxs if filtercity(r)] 

这样,我们就将所有在北京完成的运动数据筛选了出来。

4.绘制GPS数据

反复造轮子是不好玩的,绘制gpx已经有比较强大的库,地址在http://avtanski.net/projects/gps/

很不幸,这个库使用Perl作为开发语言,并使用了GD作为视觉渲染库。我花费了大量的时间,在安装GD上面。

Ubuntu默认安装Perl, GD是需要libgd的,libgd却在官网上极难下载,下载后却又发现版本不对,这让我在国外互联网上遨游了好几个小时,都要死掉了。。。到最后,我才发现,安装libgd库只要下面这一步就可以了:

apt-get install libgd-gd2-perl

我觉得这就是apt-get方式坑爹的地方,apt get gd 或者libgd根本找不到,如果不去查,谁知道这么写啊! 至于Perl的CPan管理工具,哎,不说了都是泪。

接下来下载gd 2.56,算是非常新的版本。找了各种中文版的安装步骤,发现都有问题。这种事情,最好的办法还是看README.MD啊!

解压之后,perl ./Makefile.PL

之后make

make install

然后就可以了。。。。。。

这份gpx绘制库是这么介绍自己的:

This folder contains several Perl scripts for processing and plotting

GPS track data in .GPX format. 它的readme有不少使用上的说明,当然我们不废话,把所有的gpx数据拷贝到sample_gpx文件夹下,然后华丽丽的运行 ./runme.sh 如果没有问题的话,应该是下面这样:

[/code

我假设各位读者对bash都已经很熟悉了,修改runme.sh文件,可查看更多的选项。 最后得到的结果如下图:

当时看到这个结果,我都惊呆了!这是自己跑了2000公里左右的结果,北京三环内(主要集中在长安街以北)主要的道路都遍了。尤其北三环和北土城路(10号线北段)被我各种虐。每一段白线都是一段故事,每一个点都是我的一个脚印啊!

5.总结

这文章写得显然不够详细,远远没有hand by hand。而且并没有提供更多的数据分析(显然这些工作我都做了)不过相信跑步的程序员一定都很厉害,我这就权作抛砖引玉了。

其实完全可以做成一个web服务,跑友们上传自己的跑步软件的id,就可以自动渲染出各种漂亮的跑步路径和分析图,应该会很有意义吧!

这件事情花费了我七八个小时,简直吐血,大量的时间用在了如何安装GD上,而不是下载数据上。教训告诉我,一定要读安装包里自带的说明文档,因为库和库之间的版本不同,因此可能造成版本地狱,到时候新版本卸载不了,老版本没法用的时候可别说我没提醒啊!

值得一提的是,益动gps下载的gpx文件不带换行符,这导致gpx_disualization库无法解析它(这货正则表达式写错了),我懒得再去动perl正则,于是通过替换增加了换行符。

以上是小编给大家介绍的Python和Perl绘制中国北京跑步地图的方法,希望对大家有所帮助!

(0)

相关推荐

  • 用Python代码来绘制彭罗斯点阵的教程

    这里是显示彭罗斯点阵的Python的脚本.是的,这是可以运行的有效Phython代码. 译注:彭罗斯点阵,物理学术语.上世纪70年代英国数学家彭罗斯第一次提出了这个概念,称为彭罗斯点阵(Pen-rose tiles). _ =\ """if! 1:"e,V=100 0,(0j-1)**-.2; v,S=.5/ V.real, [(0,0,4 *e,4*e* V)];w=1 -v"def! E(T,A, B,C):P ,Q,R=B*w+ A*v,B*w+C

  • 使用Python标准库中的wave模块绘制乐谱的简单教程

    在本文中,我们将探讨一种简洁的方式,以此来可视化你的MP3音乐收藏.此方法最终的结果将是一个映射你所有歌曲的正六边形网格地图,其中相似的音轨将处于相邻的位置.不同区域的颜色对应不同的音乐流派(例如:古典.嘻哈.重摇滚).举个例子来说,下面是我所收藏音乐中三张专辑的映射图:Paganini的<Violin Caprices>.Eminem的<The Eminem Show>和Coldplay的<X&Y>. 为了让它更加有趣(在某些情况下更简单),我强加了一些限制.

  • 在Python中使用matplotlib模块绘制数据图的示例

    matplotlib是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图.而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中.它的文档相当完备,并且Gallery页面中有上百幅缩略图,打开之后都有源程序.因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定. 这篇我们用matplotlib从构造最简单的bar一步一步向复杂的bar前行.什么是最简单的bar,看如下语句你就知道她有多么简单了: import ma

  • 使用python绘制常用的图表

    本文介绍如果使用python汇总常用的图表,与Excel的点选操作相比,用python绘制图表显得比较比较繁琐,尤其提现在对原始数据的处理上.但两者在绘制图表过程中的思路大致相同,Excel中能完成的工作python大多也能做到.为了更清晰的说明使用python绘制图表的过程,我们在汇总图表的代码中进行注解,说明每一行代码的具体作用.并在文章的最后给出了自定义字体和图表配色的对应表. 准备工作 import numpy as np import pandas as pd #导入图表库以进行图表绘

  • 利用Python绘制MySQL数据图实现数据可视化

    本教程的所有Python代码可以在网上的IPython notebook中获取. 考虑在公司里使用Plotly?可以看一下Plotly的on-premises企业版.(注:On-premises是指软件运行在工作场所或公司内部,详见维基百科) 注意操作系统:尽管Windows或Mac用户也可以跟随本文操作,但本文假定你使用的是Ubuntu系统(Ubuntu桌面版或Ubuntu服务器版).如果你没有Ubuntu Server,你可以通过Amazon的Web服务建立一个云平台(阅读这份教程的前半部分

  • python使用PyGame绘制图像并保存为图片文件的方法

    本文实例讲述了python使用PyGame绘制图像并保存为图片文件的方法.分享给大家供大家参考.具体实现方法如下: ''' pg_draw_circle_save101.py draw a blue solid circle on a white background save the drawing to an image file for result see http://prntscr.com/156wxi tested with Python 2.7 and PyGame 1.9.2

  • 在Linux下使用Python的matplotlib绘制数据图的教程

    如果你想要在Linxu中获得一个高效.自动化.高质量的科学画图的解决方案,应该考虑尝试下matplotlib库.Matplotlib是基于python的开源科学测绘包,基于python软件基金会许可证发布.大量的文档和例子.集成了Python和Numpy科学计算包.以及自动化能力,是作为Linux环境中进行科学画图的可靠选择的几个原因.这个教程将提供几个用matplotlib画图的例子. 特性 支持众多的图表类型,如:bar,box,contour,histogram,scatter,line

  • 使用python绘制人人网好友关系图示例

    代码依赖:networkx matplotlib 复制代码 代码如下: #! /bin/env python# -*- coding: utf-8 -*- import urllibimport urllib2import cookielibimport reimport cPickle as pimport networkx as nximport matplotlib.pyplot as plt __author__ = """Reverland (lhtlyy@gmai

  • 利用Python绘制数据的瀑布图的教程

    介绍 对于绘制某些类型的数据来说,瀑布图是一种十分有用的工具.不足为奇的是,我们可以使用Pandas和matplotlib创建一个可重复的瀑布图. 在往下进行之前,我想先告诉大家我指代的是哪种类型的图表.我将建立一个维基百科文章中描述的2D瀑布图. 这种图表的一个典型的用处是显示开始值和结束值之间起"桥梁"作用的+和-的值.因为这个原因,财务人员有时会将其称为一个桥梁.跟我之前所采用的其他例子相似,这种类型的绘图在Excel中不容易生成,当然肯定有生成它的方法,但是不容易记住. 关于瀑

  • Python使用matplotlib绘制动画的方法

    本文实例讲述了Python使用matplotlib绘制动画的方法.分享给大家供大家参考.具体分析如下: matplotlib从1.1.0版本以后就开始支持绘制动画 下面是几个的示例: 第一个例子使用generator,每隔两秒,就运行函数data_gen: # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation fig =

  • python实现绘制树枝简单示例

    python是解释型语言,本文介绍了Python下利用turtle实现绘图功能的示例,本例所示为Python绘制一个树枝,具体实现代码如下: python是解释型语言,本文介绍了Python下利用turtle实现绘图功能的示例,本例所示为Python绘制一个树枝,具体实现代码如下: import turtle def branch(length,level): if level<=0: return turtle.forward(length) turtle.left(45) branch(0.

随机推荐