docker python api 安装配置的详解

docker python api 安装配置的详解

1.docker宿主机配置文件修改

$vim /etc/default/docker #再已有OPTS中添加
DOCKER_OPTS="-H tcp://0.0.0.0:2375 -H unix://var/run/docker.sock"
使得可以通过tcp的2375端口连接到docker守护进程中,第二个-H及之后的内容可以省略

2.安装docker-py

$sudo pip install docker-py

3.编写api脚本

参考文档

http://docker-py.readthedocs.org/en/latest/

from docker import Client
d=Client(base_url='tcp://10.109.252.221:2375',version='auto',timeout=10)
#注意填写url端口版本号和超时时间
def containerCreate(**command):
  container=d.create_containter(**command)
  print container
#这里使用非关键字可变长参数**command,可以将需要使用的参数以字典形式传输,并且函数会自动识别字典内的参数
containerCreate(**{'name': 'test1', 'command': '/bin/bash','image':'ubuntu'})
#这里注意要使用**双星号传实参,不然会出错。

4.端口绑定、磁盘挂载和link操作

def containerCreate(port, volume, link, **command): # 创建容器
    command['host_config']=d.create_host_config(port_bindings=port, binds=[volume],links=link)
  container = d.create_container(**command)
  d.start(container=container.get('Id'))
  print container

containerCreate(**{'name': 'test1','stdin_open':True,'tty':True, 'command': '/bin/bash', 'image': '10.109.252.221:5000/ubuntu',
        'ports':[8008],'port':{8008:9995},'volume':'/home/ubuntu/test:/test','link':{'mysql':'db'}})
#其中,ports必须声明,port和volume是我自己写的,用来传递参数

#ports声明容器开放的端口,port中,第一个是容器端口,后一个是主机端口,正好与dokcer run -p相反

#link操作需要传递字典或元组,我自己使用元组没有成功,用字典即可。

如有疑问请留言或者到本站社区交流讨论,感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

(0)

相关推荐

  • 使用IPython来操作Docker容器的入门指引

    现在Docker是地球上最炙手可热的项目之一,就意味着人民实际上不仅仅是因为这个才喜欢它. 话虽如此,我非常喜欢使用容器,服务发现以及所有被创造出的新趣的点子和领域来切换工作作为范例. 这个文章中我会简要介绍使用python中的docker-py模块来操作Docker 容器,这里会使用我喜爱的编程工具IPython. 安装docker-py 首先需要docker-py.注意这里的案例中我将会使用Ubuntu Trusty 14.04版本. $ pip install docker-py IPyh

  • 在Docker上开始部署Python应用的教程

    几周前, Elastic Beanstalk声明在AWS云中配置和管理Docker容器.在本文中,我们通过一个简单的注册表单页面应用去理解Docker部署过程,该表单使用Elastic Beanstalk Python环境. 关于注册表单应用 几个月之前,我们就已经开发完这个应用并且发表在博客上.有4部分视频和一篇文章"Using DynamoDB and SNS with Elastic Beanstalk in any Supported AWS Region".今天,我们将在这部

  • 在Docker上部署Python的Flask框架的教程

    本文中,我将尝试展示用Docker开发python应用(主要是Web应用)的可行方法.虽然我本人专注于Python的Flask微框架,但本文目的是演示如何通过Docker更好地开发和共享应用程序,(由任何语言和框架开发的应用程序).Docker通过封装依赖项,大大减少了开发环境和正式产品的差距. 大多数Python开发人员在开发中使用virtualenv.它提供了一种易用的机制让应用程序使用自己专用的依赖项,这些依赖项可能与在其它应用程序或操作系统存在冲突(尤其是不同的Pyhton版本,还有不同

  • docker python如何实现打包的方法

    最近用Python写了一段爬虫程序,为了隔离其运行环境,易于分发,把项目打包成Docker镜像 Dockerfile FROM python:2.7.12-alpine ADD ./src /job CMD ["python", "/job/main.py"] 构建命令 $ docker build -t job . 运行 $ docker run -d --name job job 比较简单 感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

  • 详解在Python和IPython中使用Docker

    现在Docker是地球上最炙手可热的项目之一,就意味着人民实际上不仅仅是因为这个才喜欢它. 话虽如此,我非常喜欢使用容器,服务发现以及所有被创造出的新趣的点子和领域来切换工作作为范例. 这个文章中我会简要介绍使用python中的docker-py模块来操作Docker 容器,这里会使用我喜爱的编程工具IPython. 安装docker-py 首先需要docker-py.注意这里的案例中我将会使用Ubuntu Trusty 14.04版本. 复制代码 代码如下: $ pip install doc

  • 如何运用docker配合python开发环境实例

    由于开发一个Python程序时需要依赖大量的三方库包,且python2和3本身就有互不兼容的地方,我们往往需要一个隔离的环境,来避免版本影响造成的bug. 传统的做法大多数人可能会选择virtualenv来隔离,但是它有很多明显的缺点: 无法提供完全的隔离 如果不想在正式环境中使用,它就会造成差异 而随着容器技术的日渐成熟和普及,Docker无疑成为解决这个问题的最优解 本文将主要介绍docker和flask的配合开发 步骤: 1.安装Docker(这里不详细介绍) # 参考命令 sudo wg

  • python脚本监控docker容器

    本文实例为大家分享了python脚本监控docker容器的方法,供大家参考,具体内容如下 脚本功能: 1.监控CPU使用率 2.监控内存使用状况 3.监控网络流量 具体代码: #!/usr/bin/env python # --*-- coding:UTF-8 --*-- import sys import tab import re import os import time from docker import Client import commands keys_container_st

  • 使用Docker开发python Web 应用

    本文中,我将尝试展示用Docker开发python应用(主要是Web应用)的可行方法.虽然我本人专注于Python的Flask微框架,但本文目的是演示如何通过Docker更好地开发和共享应用程序,(由任何语言和框架开发的应用程序).Docker通过封装依赖项,大大减少了开发环境和正式产品的差距. 大多数Python开发人员在开发中使用virtualenv.它提供了一种易用的机制让应用程序使用自己专用的依赖项,这些依赖项可能与在其它应用程序或操作系统存在冲突(尤其是不同的Pyhton版本,还有不同

  • Docker 打包python的命令详解

    最近用Python写了一段爬虫程序,为了隔离其运行环境,易于分发,把项目打包成Docker镜像 Dockerfile FROM python:2.7.12-alpine ADD ./src /job CMD ["python", "/job/main.py"] 构建命令 $ docker build -t job . 运行 $ docker run -d --name job job 比较简单 以上所述是小编给大家介绍的Docker 打包python的命令详解,希望

  • Docker-client for python详解及简单示例

    Docker-client for python使用指南: 客户端初始化的三种方法 import docker docker.api() docker.APIClient() docker.client() docker.DockerClient() 其实也是docker.client()的一个子集 docker.from_env() 其实就是docker.client()的一个子集 一.初始化客户端 1.Docker客户端的初始化工作 >>> import docker >>

随机推荐