python实现稀疏矩阵示例代码

工程实践中,多数情况下,大矩阵一般都为稀疏矩阵,所以如何处理稀疏矩阵在实际中就非常重要。本文以Python里中的实现为例,首先来探讨一下稀疏矩阵是如何存储表示的。

1.sparse模块初探

python中scipy模块中,有一个模块叫sparse模块,就是专门为了解决稀疏矩阵而生。本文的大部分内容,其实就是基于sparse模块而来的。

第一步自然就是导入sparse模块

>>> from scipy import sparse

然后help一把,先来看个大概

>>> help(sparse)

直接找到我们最关心的部分:

  Usage information
  =================

  There are seven available sparse matrix types:

    1. csc_matrix: Compressed Sparse Column format
    2. csr_matrix: Compressed Sparse Row format
    3. bsr_matrix: Block Sparse Row format
    4. lil_matrix: List of Lists format
    5. dok_matrix: Dictionary of Keys format
    6. coo_matrix: COOrdinate format (aka IJV, triplet format)
    7. dia_matrix: DIAgonal format

  To construct a matrix efficiently, use either dok_matrix or lil_matrix.
  The lil_matrix class supports basic slicing and fancy
  indexing with a similar syntax to NumPy arrays. As illustrated below,
  the COO format may also be used to efficiently construct matrices.

  To perform manipulations such as multiplication or inversion, first
  convert the matrix to either CSC or CSR format. The lil_matrix format is
  row-based, so conversion to CSR is efficient, whereas conversion to CSC
  is less so.

  All conversions among the CSR, CSC, and COO formats are efficient,
  linear-time operations.

通过这段描述,我们对sparse模块就有了个大致的了解。sparse模块里面有7种存储稀疏矩阵的方式。接下来,我们对这7种方式来做个一一介绍。

2.coo_matrix

coo_matrix是最简单的存储方式。采用三个数组row、col和data保存非零元素的信息。这三个数组的长度相同,row保存元素的行,col保存元素的列,data保存元素的值。一般来说,coo_matrix主要用来创建矩阵,因为coo_matrix无法对矩阵的元素进行增删改等操作,一旦矩阵创建成功以后,会转化为其他形式的矩阵。

>>> row = [2,2,3,2]
>>> col = [3,4,2,3]
>>> c = sparse.coo_matrix((data,(row,col)),shape=(5,6))
>>> print c.toarray()
[[0 0 0 0 0 0]
 [0 0 0 0 0 0]
 [0 0 0 5 2 0]
 [0 0 3 0 0 0]
 [0 0 0 0 0 0]]

稍微需要注意的一点是,用coo_matrix创建矩阵的时候,相同的行列坐标可以出现多次。矩阵被真正创建完成以后,相应的坐标值会加起来得到最终的结果。

3.dok_matrix与lil_matrix

dok_matrix和lil_matrix适用的场景是逐渐添加矩阵的元素。doc_matrix的策略是采用字典来记录矩阵中不为0的元素。自然,字典的key存的是记录元素的位置信息的元祖,value是记录元素的具体值。

>>> import numpy as np
>>> from scipy.sparse import dok_matrix
>>> S = dok_matrix((5, 5), dtype=np.float32)
>>> for i in range(5):
...   for j in range(5):
...       S[i, j] = i + j
...
>>> print S.toarray()
[[ 0. 1. 2. 3. 4.]
 [ 1. 2. 3. 4. 5.]
 [ 2. 3. 4. 5. 6.]
 [ 3. 4. 5. 6. 7.]
 [ 4. 5. 6. 7. 8.]]

lil_matrix则是使用两个列表存储非0元素。data保存每行中的非零元素,rows保存非零元素所在的列。这种格式也很适合逐个添加元素,并且能快速获取行相关的数据。

>>> from scipy.sparse import lil_matrix
>>> l = lil_matrix((6,5))
>>> l[2,3] = 1
>>> l[3,4] = 2
>>> l[3,2] = 3
>>> print l.toarray()
[[ 0. 0. 0. 0. 0.]
 [ 0. 0. 0. 0. 0.]
 [ 0. 0. 0. 1. 0.]
 [ 0. 0. 3. 0. 2.]
 [ 0. 0. 0. 0. 0.]
 [ 0. 0. 0. 0. 0.]]
>>> print l.data
[[] [] [1.0] [3.0, 2.0] [] []]
>>> print l.rows
[[] [] [3] [2, 4] [] []]

由上面的分析很容易可以看出,上面两种构建稀疏矩阵的方式,一般也是用来通过逐渐添加非零元素的方式来构建矩阵,然后转换成其他可以快速计算的矩阵存储方式。

4.dia_matrix

这是一种对角线的存储方式。其中,列代表对角线,行代表行。如果对角线上的元素全为0,则省略。

如果原始矩阵是个对角性很好的矩阵那压缩率会非常高。

找了网络上的一张图,大家就很容易能看明白其中的原理。

5.csr_matrix与csc_matrix

csr_matrix,全名为Compressed Sparse Row,是按行对矩阵进行压缩的。CSR需要三类数据:数值,列号,以及行偏移量。CSR是一种编码的方式,其中,数值与列号的含义,与coo里是一致的。行偏移表示某一行的第一个元素在values里面的起始偏移位置。

同样在网络上找了一张图,能比较好反映其中的原理。

看看在python里怎么使用:

>>> from scipy.sparse import csr_matrix
>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
    [0, 0, 3],
    [4, 5, 6]])

怎么样,是不是也不是很难理解。

我们再看看文档中是怎么说的

 Notes
 | -----
 |
 | Sparse matrices can be used in arithmetic operations: they support
 | addition, subtraction, multiplication, division, and matrix power.
 |
 | Advantages of the CSR format
 |  - efficient arithmetic operations CSR + CSR, CSR * CSR, etc.
 |  - efficient row slicing
 |  - fast matrix vector products
 |
 | Disadvantages of the CSR format
 |  - slow column slicing operations (consider CSC)
 |  - changes to the sparsity structure are expensive (consider LIL or DOK)

不难看出,csr_matrix比较适合用来做真正的矩阵运算。

至于csc_matrix,跟csr_matrix类似,只不过是基于列的方式压缩的,不再单独介绍。

6.bsr_matrix

Block Sparse Row format,顾名思义,是按分块的思想对矩阵进行压缩。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python实现矩阵乘法的方法

    本文实例讲述了python实现矩阵乘法的方法.分享给大家供大家参考.具体实现方法如下: def matrixMul(A, B): res = [[0] * len(B[0]) for i in range(len(A))] for i in range(len(A)): for j in range(len(B[0])): for k in range(len(B)): res[i][j] += A[i][k] * B[k][j] return res def matrixMul2(A, B):

  • Python矩阵常见运算操作实例总结

    本文实例讲述了Python矩阵常见运算操作.分享给大家供大家参考,具体如下: python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包. 一.numpy的导入和使用 from numpy import *;#导入numpy的库函数 import numpy as np; #这个方式使用numpy的函数时,需要以np.开头. 二.矩阵的创建 由一维或二维数据创建矩阵 from numpy import *; a1=array([1,2,3]); a1=ma

  • Python中shape计算矩阵的方法示例

    本文实例讲述了Python中shape计算矩阵的方法.分享给大家供大家参考,具体如下: 看到机器学习算法时,注意到了shape计算矩阵的方法接下来就讲讲我的理解吧 >>> from numpy import * >>> import operator >>> a =mat([[1,2,3],[5,6,9]]) >>> a matrix([[1, 2, 3], [5, 6, 9]]) >>> shape(a) (2,

  • Python使用稀疏矩阵节省内存实例

    推荐系统中经常需要处理类似user_id, item_id, rating这样的数据,其实就是数学里面的稀疏矩阵,scipy中提供了sparse模块来解决这个问题,但scipy.sparse有很多问题不太合用: 1.不能很好的同时支持data[i, ...].data[..., j].data[i, j]快速切片: 2.由于数据保存在内存中,不能很好的支持海量数据处理. 要支持data[i, ...].data[..., j]的快速切片,需要i或者j的数据集中存储:同时,为了保存海量的数据,也需

  • Python列表list解析操作示例【整数操作、字符操作、矩阵操作】

    本文实例讲述了Python列表list解析操作.分享给大家供大家参考,具体如下: #coding=utf8 print ''''' Python在一行中使用一个for循环将所有值放到一个列表中. 列表解析的语法如下: [expr for iter_var in iterable] [expr for iter_var in iterable if cond_expr] ----------------------------------------------------------------

  • Python使用迭代器打印螺旋矩阵的思路及代码示例

    思路 螺旋矩阵是指一个呈螺旋状的矩阵,它的数字由第一行开始到右边不断变大,向下变大, 向左变大,向上变大,如此循环. 螺旋矩阵用二维数组表示,坐标(x,y),即(x轴坐标,y轴坐标). 顺时针螺旋的方向是->右,下,左,上,用数值表示即是x加1格(1,0),y加1格(0,1),x减1格(-1,0),y减1格(0,-1). 坐标从(0,0)开始行走,当超出范围或遇到障碍时切换方向. 螺旋矩阵的打印首先要对n*n的数组进行赋值,根据规律可以看出,每一层都是按照右->下->左->上的顺序

  • Python创建对称矩阵的方法示例【基于numpy模块】

    本文实例讲述了Python创建对称矩阵的方法.分享给大家供大家参考,具体如下: 对称(实对称)矩阵也即: step 1:创建一个方阵 >>> import numpy as np >>> X = np.random.rand(5**2).reshape(5, 5) >>> X array([[ 0.26984148, 0.25408384, 0.12428487, 0.0194565 , 0.91287708], [ 0.31837673, 0.354

  • Python中的Numpy入门教程

    1.Numpy是什么 很简单,Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数.如果接触过matlab.scilab,那么numpy很好入手. 在以下的代码示例中,总是先导入了numpy: 复制代码 代码如下: >>> import numpy as np>>> print np.version.version1.6.2

  • Python实现的矩阵类实例

    本文实例讲述了Python实现的矩阵类.分享给大家供大家参考,具体如下: 科学计算离不开矩阵的运算.当然,python已经有非常好的现成的库:numpy(numpy的简单安装与使用可参考http://www.jb51.net/article/66236.htm). 我写这个矩阵类,并不是打算重新造一个轮子,只是作为一个练习,记录在此. 注:这个类的函数还没全部实现,慢慢在完善吧. 全部代码: import copy class Matrix: '''矩阵类''' def __init__(sel

  • Python 稀疏矩阵-sparse 存储和转换

    稀疏矩阵-sparsep from scipy import sparse 稀疏矩阵的储存形式 在科学与工程领域中求解线性模型时经常出现许多大型的矩阵,这些矩阵中大部分的元素都为0,被称为稀疏矩阵.用NumPy的ndarray数组保存这样的矩阵,将很浪费内存,由于矩阵的稀疏特性,可以通过只保存非零元素的相关信息,从而节约内存的使用.此外,针对这种特殊结构的矩阵编写运算函数,也可以提高矩阵的运算速度. scipy.sparse库中提供了多种表示稀疏矩阵的格式,每种格式都有不同的用处,其中dok_m

  • Python表示矩阵的方法分析

    本文实例讲述了Python表示矩阵的方法.分享给大家供大家参考,具体如下: 在c语言中,表示个"整型3行4列"的矩阵,可以这样声明:int  a[3][4];在python中一不能声明变量int,二不能列出维数.可以利用列表中夹带列表形式表示.例如: 表示矩阵 ,可以这样: count = 1 a = [] for i in range(0, 3): tmp = [] for j in range(0, 3): tmp.append(count) count += 1 a.append

  • Python NumPy库安装使用笔记

    1. NumPy安装 使用pip包管理工具进行安装 复制代码 代码如下: $ sudo pip install numpy 使用pip包管理工具安装ipython(交互式shell工具) 复制代码 代码如下: $ sudo pip instlal ipython $ ipython --pylab  #pylab模式下, 会自动导入SciPy, NumPy, Matplotlib模块 2. NumPy基础 2.1. NumPy数组对象 具体解释可以看每一行代码后的解释和输出 复制代码 代码如下:

随机推荐