k8s编排之StatefulSet知识点详解一

目录
  • 正文
  • StatefulSet 的设计理解
    • Service 如何被访问
    • Headless Service 对应的 YAML文件
    • StatefulSet 的 YAML 文件
  • 解析一下 Pod 对应的 Headless Service

正文

Deployment认为,一个应用的所有 Pod,是完全一样的。所以,它们互相之间没有顺序,也无所谓运行在哪台宿主机上。需要的时候,Deployment 就可以通过 Pod 模板创建新的 Pod;不需要的时候,Deployment 就可以“杀掉”任意一个 Pod。

但是,在实际的场景中,并不是所有的应用都可以满足这样的要求。

尤其是分布式应用,它的多个实例之间,往往有依赖关系,比如:主从关系、主备关系。

还有就是数据存储类应用,它的多个实例,往往都会在本地磁盘上保存一份数据。而这些实例一旦被杀掉,即便重建出来,实例与数据之间的对应关系也已经丢失,从而导致应用失败。

所以,这种实例之间有不对等关系,以及实例对外部数据有依赖关系的应用,就被称为“有状态应用”(Stateful Application)。

容器技术诞生后,大家很快发现,它用来封装“无状态应用”(Stateless Application),尤其是 Web 服务,非常好用。但是,一旦你想要用容器运行“有状态应用”,其困难程度就会直线上升。而且,这个问题解决起来,单纯依靠容器技术本身已经无能为力,这也就导致了很长一段时间内,“有状态应用”几乎成了容器技术圈子的“忌讳”,大家一听到这个词,就纷纷摇头。

得益于“控制器模式”的设计思想,Kubernetes 项目很早就在 Deployment 的基础上,扩展出了对“有状态应用”的初步支持。这个编排功能,就是:StatefulSet。

StatefulSet 的设计理解

StatefulSet 的设计其实非常容易理解。它把真实世界里的应用状态,抽象为了两种情况:

  • 拓扑状态。这种情况意味着,应用的多个实例之间不是完全对等的关系。这些应用实例,必须按照某些顺序启动,比如应用的主节点 A 要先于从节点 B 启动。而如果你把 A 和 B 两个 Pod 删除掉,它们再次被创建出来时也必须严格按照这个顺序才行。并且,新创建出来的 Pod,必须和原来 Pod 的网络标识一样,这样原先的访问者才能使用同样的方法,访问到这个新 Pod。
  • 存储状态。这种情况意味着,应用的多个实例分别绑定了不同的存储数据。对于这些应用实例来说,Pod A 第一次读取到的数据,和隔了十分钟之后再次读取到的数据,应该是同一份,哪怕在此期间 Pod A 被重新创建过。这种情况最典型的例子,就是一个数据库应用的多个存储实例。

所以,StatefulSet 的核心功能,就是通过某种方式记录这些状态,然后在 Pod 被重新创建时,能够为新 Pod 恢复这些状态。

在开始讲述 StatefulSet 的工作原理之前,我就必须先为你讲解一个 Kubernetes 项目中非常实用的概念:Headless Service。

我在和你一起讨论 Kubernetes 架构的时候就曾介绍过,Service 是 Kubernetes 项目中用来将一组 Pod 暴露给外界访问的一种机制。比如,一个 Deployment 有 3 个 Pod,那么我就可以定义一个 Service。然后,用户只要能访问到这个 Service,它就能访问到某个具体的 Pod。

Service 如何被访问

那么,这个 Service 又是如何被访问的呢?

第一种方式,是以 Service 的 VIP(Virtual IP,即:虚拟 IP)方式。比如:当我访问 10.0.23.1 这个 Service 的 IP 地址时,10.0.23.1 其实就是一个 VIP,它会把请求转发到该 Service 所代理的某一个 Pod 上。这里的具体原理,我会在后续的 Service 章节中进行详细介绍。

第二种方式,就是以 Service 的 DNS 方式。比如:这时候,只要我访问“my-svc.my-namespace.svc.cluster.local”这条 DNS 记录,就可以访问到名叫 my-svc 的 Service 所代理的某一个 Pod。

而在第二种 Service DNS 的方式下,具体还可以分为两种处理方法:

第一种处理方法,是 Normal Service。这种情况下,你访问“my-svc.my-namespace.svc.cluster.local”解析到的,正是 my-svc 这个 Service 的 VIP,后面的流程就跟 VIP 方式一致了。

而第二种处理方法,正是 Headless Service。这种情况下,你访问“my-svc.my-namespace.svc.cluster.local”解析到的,直接就是 my-svc 代理的某一个 Pod 的 IP 地址。可以看到,这里的区别在于,Headless Service 不需要分配一个 VIP,而是可以直接以 DNS 记录的方式解析出被代理 Pod 的 IP 地址。

那么,这样的设计又有什么作用呢? 想要回答这个问题,我们需要从 Headless Service 的定义方式看起。

Headless Service 对应的 YAML文件

下面是一个标准的 Headless Service 对应的 YAML 文件:

apiVersion: v1
kind: Service
metadata:
  name: nginx
  labels:
    app: nginx
spec:
  ports:
  - port: 80
    name: web
  clusterIP: None
  selector:
    app: nginx

可以看到,所谓的 Headless Service,其实仍是一个标准 Service 的 YAML 文件。只不过,它的 clusterIP 字段的值是:None,即:这个 Service,没有一个 VIP 作为“头”。这也就是 Headless 的含义。所以,这个 Service 被创建后并不会被分配一个 VIP,而是会以 DNS 记录的方式暴露出它所代理的 Pod。

而它所代理的 Pod,依然是采用 Label Selector 机制选择出来的,即:所有携带了 app=nginx 标签的 Pod,都会被这个 Service 代理起来。

当你按照这样的方式创建了一个 Headless Service 之后,它所代理的所有 Pod 的 IP 地址,都会被绑定一个这样格式的 DNS 记录,如下所示:<pod-name>.<svc-name>.<namespace>.svc.cluster.local

这个 DNS 记录,正是 Kubernetes 项目为 Pod 分配的唯一的“可解析身份”(Resolvable Identity)。

有了这个“可解析身份”,只要你知道了一个 Pod 的名字,以及它对应的 Service 的名字,你就可以非常确定地通过这条 DNS 记录访问到 Pod 的 IP 地址。

那么,StatefulSet 又是如何使用这个 DNS 记录来维持 Pod 的拓扑状态的呢?

StatefulSet 的 YAML 文件

为了回答这个问题,现在我们就来编写一个 StatefulSet 的 YAML 文件,如下所示:

apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: web
spec:
  serviceName: "nginx"
  replicas: 2
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx:1.9.1
        ports:
        - containerPort: 80
          name: web

这个 YAML 文件,和我们在前面文章中用到的 nginx-deployment 的唯一区别,就是多了一个 serviceName=nginx 字段。

这个字段的作用,就是告诉 StatefulSet 控制器,在执行控制循环(Control Loop)的时候,请使用 nginx 这个 Headless Service 来保证 Pod 的“可解析身份”。

所以,当你通过 kubectl create 创建了上面这个 Service 和 StatefulSet 之后,就会看到如下两个对象:

$ kubectl create -f svc.yaml
$ kubectl get service nginx
NAME      TYPE         CLUSTER-IP   EXTERNAL-IP   PORT(S)   AGE
nginx     ClusterIP    None         <none>        80/TCP    10s
$ kubectl create -f statefulset.yaml
$ kubectl get statefulset web
NAME      DESIRED   CURRENT   AGE
web       2         1         19s

查看StatefulSet 的 Events 这些信息

$ kubectl get pods -w -l app=nginx
NAME      READY     STATUS    RESTARTS   AGE
web-0     0/1       Pending   0          0s
web-0     0/1       Pending   0         0s
web-0     0/1       ContainerCreating   0         0s
web-0     1/1       Running   0         19s
web-1     0/1       Pending   0         0s
web-1     0/1       Pending   0         0s
web-1     0/1       ContainerCreating   0         0s
web-1     1/1       Running   0         20s

通过上面这个 Pod 的创建过程,我们不难看到,StatefulSet 给它所管理的所有 Pod 的名字,进行了编号,编号规则是:-。

而且这些编号都是从 0 开始累加,与 StatefulSet 的每个 Pod 实例一一对应,绝不重复。

更重要的是,这些 Pod 的创建,也是严格按照编号顺序进行的。比如,在 web-0 进入到 Running 状态、并且细分状态(Conditions)成为 Ready 之前,web-1 会一直处于 Pending 状态。

当这两个 Pod 都进入了 Running 状态之后,你就可以查看到它们各自唯一的“网络身份”了。

我们使用 kubectl exec 命令进入到容器中查看它们的 hostname:

$ kubectl exec web-0 -- sh -c 'hostname'
web-0
$ kubectl exec web-1 -- sh -c 'hostname'
web-1

可以看到,这两个 Pod 的 hostname 与 Pod 名字是一致的,都被分配了对应的编号。接下来,我们再试着以 DNS 的方式,访问一下这个 Headless Service:

$ kubectl run -i --tty --image busybox dns-test --restart=Never --rm /bin/sh

解析一下 Pod 对应的 Headless Service

通过这条命令,我们启动了一个一次性的 Pod,因为–rm 意味着 Pod 退出后就会被删除掉。然后,在这个 Pod 的容器里面,我们尝试用 nslookup 命令,解析一下 Pod 对应的 Headless Service:

$ kubectl run -i --tty --image busybox dns-test --restart=Never --rm /bin/sh
$ nslookup web-0.nginx
Server:    10.0.0.10
Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local
Name:      web-0.nginx
Address 1: 10.244.1.7
$ nslookup web-1.nginx
Server:    10.0.0.10
Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local
Name:      web-1.nginx
Address 1: 10.244.2.7

从 nslookup 命令的输出结果中,我们可以看到,在访问 web-0.nginx 的时候,最后解析到的,正是 web-0 这个 Pod 的 IP 地址;而当访问 web-1.nginx 的时候,解析到的则是 web-1 的 IP 地址。

这时候,如果你在另外一个 Terminal 里把这两个“有状态应用”的 Pod 删掉,然后,再在当前 Terminal 里 Watch 一下这两个 Pod 的状态变化,就会发现一个有趣的现象

$ kubectl get pod -w -l app=nginx
NAME      READY     STATUS              RESTARTS   AGE
web-0     0/1       ContainerCreating   0          0s
NAME      READY     STATUS    RESTARTS   AGE
web-0     1/1       Running   0          2s
web-1     0/1       Pending   0         0s
web-1     0/1       ContainerCreating   0         0s
web-1     1/1       Running   0         32s

可以看到,当我们把这两个 Pod 删除之后,Kubernetes 会按照原先编号的顺序,创建出了两个新的 Pod。并且,Kubernetes 依然为它们分配了与原来相同的“网络身份”:web-0.nginx 和 web-1.nginx。

通过这种严格的对应规则,StatefulSet 就保证了 Pod 网络标识的稳定性。

比如,如果 web-0 是一个需要先启动的主节点,web-1 是一个后启动的从节点,那么只要这个 StatefulSet 不被删除,你访问 web-0.nginx 时始终都会落在主节点上,访问 web-1.nginx 时,则始终都会落在从节点上,这个关系绝对不会发生任何变化。

所以,如果我们再用 nslookup 命令,查看一下这个新 Pod 对应的 Headless Service 的话:

$ kubectl run -i --tty --image busybox dns-test --restart=Never --rm /bin/sh
$ nslookup web-0.nginx
Server:    10.0.0.10
Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local
Name:      web-0.nginx
Address 1: 10.244.1.8
$ nslookup web-1.nginx
Server:    10.0.0.10
Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local
Name:      web-1.nginx
Address 1: 10.244.2.8

我们可以看到,在这个 StatefulSet 中,这两个新 Pod 的“网络标识”(比如:web-0.nginx 和 web-1.nginx),再次解析到了正确的 IP 地址(比如:web-0 Pod 的 IP 地址 10.244.1.8)。

通过这种方法,Kubernetes 就成功地将 Pod 的拓扑状态(比如:哪个节点先启动,哪个节点后启动),按照 Pod 的“名字 + 编号”的方式固定了下来。此外,Kubernetes 还为每一个 Pod 提供了一个固定并且唯一的访问入口,即:这个 Pod 对应的 DNS 记录。

这些状态,在 StatefulSet 的整个生命周期里都会保持不变,绝不会因为对应 Pod 的删除或者重新创建而失效。

不过,相信你也已经注意到了,尽管 web-0.nginx 这条记录本身不会变,但它解析到的 Pod 的 IP 地址,并不是固定的。这就意味着,对于“有状态应用”实例的访问,你必须使用 DNS 记录或者 hostname 的方式,而绝不应该直接访问这些 Pod 的 IP 地址。

以上就是k8s编排之StatefulSet知识点详解一的详细内容,更多关于k8s编排StatefulSet的资料请关注我们其它相关文章!

(0)

相关推荐

  • k8s部署redis集群搭建过程示例详解

    目录 写在前面 一.redis集群搭建 1.1使用redis-cli创建集群 1.2redis集群状态验证(可选) 1.3重启pod,验证集群(可选) 1.4创建Service服务 1.5 Springboot项目配置 1.6相关疑问分析 写在前面 在上一篇文章中,我们已经做到了已经创建好6个redis副本了. 具体的详情,可以查看这里:k8s部署redis集群(一) 那么接下来,我们就继续实现redis集群的搭建过程. 一.redis集群搭建 1.1使用redis-cli创建集群 # 查看re

  • k8s编排之DaemonSet知识点详解

    目录 如何对 StatefulSet 进行“滚动更新”(rolling update)? 下面重点讲解一个\知识点:DaemonSet 列举几个例子: API 对象的定义 如何在指定的 Node 上创建新 Pod 呢? nodeAffinity 含义 如何对 StatefulSet 进行“滚动更新”(rolling update)? 你只要修改 StatefulSet 的 Pod 模板,就会自动触发“滚动更新”: kubectl patch statefulset mysql --type='j

  • k8s实现身份认证策略及过程解析

    目录 身份认证策略 API Server启用的身份认证机制 kubelet启用的身份认证机制 X.509数字证书认证 静态令牌文件 Service Account令牌 OpenID Connect(OIDC)令牌 Webhook令牌认证 身份认证代理 静态令牌认证配置案例 静态令牌认证的基础配置 配置示例 X509 数字证书认证 所有的证书 X509数字证书认证测试 身份认证策略 X.509客户端证书认证 持有者令牌(bearer token) 静态令牌文件(Static Token File)

  • k8s部署redis集群实现过程实例详解

    目录 写在前面 前置准备 一.nfs安装 二.SC.PV 创建 2.1创建SC 2.2创建PV 三.redis集群搭建 3.1创建headless服务 3.2创建redis对应pod集群 写在前面 一般来说,REDIS部署有三种模式. 单实例模式,一般用于测试环境. 哨兵模式 集群模式 后两者用于生产部署 哨兵模式 在redis3.0以前,要实现集群一般是借助哨兵sentinel工具来监控master节点的状态. 如果master节点异常,则会做主从切换,将某一台slave作为master. 引

  • k8s编排之Deployment知识点详解

    目录 Pod 复杂的API对象 nginx-deployment Deployment 及类似控制器总结 Deployment 所控制的 ReplicaSet查看 Pod 复杂的API对象 Pod 这个看似复杂的 API 对象,实际上就是对容器的进一步抽象和封装而已. 说得更形象些,“容器”镜像虽然好用,但是容器这样一个“沙盒”的概念,对于描述应用来说,还是太过简单了.这就好比,集装箱固然好用,但是如果它四面都光秃秃的,吊车还怎么把这个集装箱吊起来并摆放好呢? 所以,Pod 对象,其实就是容器的

  • k8s应用监控探针详解

    目录 应用监控 pod状态转换 pod的启动流程? Pod支持的监测类型(健康探针) 监测机制 配置参数 示例 image pull policy 镜像管理策略 应用监控 参考 https://www.jb51.net/article/241418.htm 在pod之上 添加一个探针, kubelet通过探针去检查应用 pod状态转换 pod的启动流程? schduler环节 先绑定节点 kubelet接管 准备CNI CSI CRI 启动pod中的container 启动探针 存活探针 监测p

  • K8S 实用工具之合并多个kubeconfig实现详解

    目录 开篇 解决方案 方案一:KUBECONFIG 环境变量指向多个文件 方案二:flatten 方案三:kubectl 插件 konfig 实用工具:krew 实用工具:konfig 总结 开篇 磨刀不误砍柴工 工欲善其事必先利其器 K8S 集群规模,有的公司倾向于少量大规模 K8S 集群,也有的公司会倾向于大量小规模的 K8S 集群. 如果是第二种情况,是否有一个简单的 kubectl 命令来获取一个 kubeconfig 文件并将其合并到 ~/.kube/config 文件作为一个额外的上

  • k8s编排之StatefulSet知识点详解二

    目录 StatefulSet 对存储状态的管理机制 第一步:定义一个 PVC,声明想要的 Volume 的属性 第二步:在应用的 Pod 中,声明使用这个 PVC 常见的 PV 对象的 YAML 文件 StatefulSet 对存储状态的管理机制 这个机制,主要使用的是一个叫作 Persistent Volume Claim 的功能. 要在一个 Pod 里声明 Volume,只要在 Pod 里加上 spec.volumes 字段即可.然后,你就可以在这个字段里定义一个具体类型的 Volume 了

  • k8s编排之StatefulSet知识点详解一

    目录 正文 StatefulSet 的设计理解 Service 如何被访问 Headless Service 对应的 YAML文件 StatefulSet 的 YAML 文件 解析一下 Pod 对应的 Headless Service 正文 Deployment认为,一个应用的所有 Pod,是完全一样的.所以,它们互相之间没有顺序,也无所谓运行在哪台宿主机上.需要的时候,Deployment 就可以通过 Pod 模板创建新的 Pod:不需要的时候,Deployment 就可以“杀掉”任意一个 P

  • 基于java集合中的一些易混淆的知识点(详解)

    (一) collection和collections 这两者均位于java.util包下,不同的是: collection是一个集合接口,有ListSet等常见的子接口,是集合框架图的第一个节点,,提供了对集合对象进行基本操作的一系列方法. 常见的方法有: boolean add(E e) 往容器中添加元素:int size() 返回collection的元素数:boolean isEmpty() 判断此容器是否为空: boolean contains(Object o) 如果此collecti

  • python程序文件扩展名知识点详解

    python程序文件的扩展名称是什么 python程序的扩展名有.py..pyc..pyo和.pyd..py是源文件,.pyc是源文件编译后的文件,.pyo是源文件优化编译后的文件,.pyd是其他语言写的python库. 扩展名 在写Python程序时我们常见的扩展名是py, pyc,其实还有其他几种扩展名.下面是几种扩展名的用法. py:py就是最基本的源码扩展名.windows下直接双击运行会调用python.exe执行. pyw:pyw是另一种源码扩展名,跟py唯一的区别是在windows

  • MySQL模式 Strict Mode知识点详解

    I. Strict Mode阐述 根据 mysql5.0以上版本 strict mode (STRICT_TRANS_TABLES) 的限制: 1).不支持对not null字段插入null值 2).不支持对自增长字段插入''值,可插入null值 3).不支持 text 字段有默认值 看下面代码:(第一个字段为自增字段) Sql代码 $query="insert into demo values('','$firstname','$lastname','$sex')"; 上边代码只在非

  • MySQL使用TEXT/BLOB类型的知识点详解

    一.TEXT和BLOB的区别 TEXT和BLOB家族之间仅有的不同是BLOB类型存储的是二进制数据,没有排序规则或字符集,而TEXT类型有字符集或排序规则.说白了如果要储存中文则选择TEXT. 二.默认值问题 Strict Mode下不能设置默认值,否则会报can't have a default value错: mysql> create table `test`.`text_blob`( -> `a_text` text DEFAULT ' ' , -> `b_blob` blob

  • mysql MGR 单主多主模式切换知识点详解

    主库执行 CREATE DATABASE test CHARACTER SET utf8 COLLATE utf8_general_ci; use test; create table if not exists h1 (id int(10) PRIMARY KEY AUTO_INCREMENT,name varchar(50) NOT NULL); insert into test.h1 values(1,"wang"),(2,"guo"),(3,"ya

  • Django 404、500页面全局配置知识点详解

    django版本为2.2.7,全局配置404.500页面,解决静态文件路径等问题 urls中编写 urlpatterns = [ .............. ] handler404 = 'first.views.page_not_found' #handler404为固定写法,first.views.page_not_found为404处理函数的位置 handler500 = 'first.views.page_error' #同上 指定的views中 #全局404 def page_not

随机推荐