Python去除图片水印实现方法详解

目录
  • OpenCV介绍
  • 去水印
  • 图片去水印原理

最近写文章遇到图片有水印,如何去除水印呢?

网上找了各种办法,也跑到小红书、抖音等平台找有没有不收费就去水印的网站,但是基本上都是需要VIP会员才可以。

话又说回来这种事情怎么能难倒一个程序员呢?Python的库有这么多肯定有一款适合我吧?

于是找来了OpenCV。

OpenCV介绍

文档链接:https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_tutorials.html

Opencv(Open Source Computer Vision Library)是一个基于开源发行的跨平台计算机视觉库,它实现了图像处理和计算机视觉方面的很多通用算法,已成为计算机视觉领域最有力的研究工具。

在这里我们要区分两个概念:

  • 图像处理和计算机视觉的区别:图像处理侧重于“处理”图像–如增强,还原,去噪,分割等等;
  • 而计算机视觉重点在于使用计算机来模拟人的视觉,因此模拟才是计算机视觉领域的最终目标。

OpenCV用C++语言编写,它具有C ++,Python,Java和MATLAB接口,并支持Windows,Linux,Android和Mac OS, 如今也提供对于C#、Ch、Ruby,GO的支持

OpenCV应用领域有:人机互动、物体识别、 图像分割、人脸识别、动作识别、运动跟踪、机器人、运动分析、机器视觉、结构分析、汽车安全驾驶等。

安装:

安装numpy:pip install numpy

安装opencv-python:pip install opencv-python

安装opencv-contrib-python**:pip install opencv-contrib-python

如果安装过程中有误,可以去下载安装whl:http://www.lfd.uci.edu/~gohlke/pythonlibs/,找到对应的版本下载。

在命令行安装成功后,进入开发环境导入cv2,如果未报错,就证明opencv安装成功。

去水印

图片展示

记得学过PS中有蒙版,可以使用蒙版遮罩完成。

代码:

python
# 方式一
import cv2
# 黑底白字
src = cv2.imread("images/a1.png")  # 默认的彩色图(IMREAD_COLOR)方式读入原始图像
# black.jpg
mask = cv2.imread('images/a2.png', cv2.IMREAD_GRAYSCALE)  # 灰度图(IMREAD_GRAYSCALE)方式读入水印蒙版图像
# 参数:目标修复图像; 蒙版图(定位修复区域); 选取邻域半径; 修复算法(包括INPAINT_TELEA/INPAINT_NS, 前者算法效果较好)
dst = cv2.inpaint(src, mask, 3, cv2.INPAINT_NS)
cv2.imwrite('result.jpg', dst)

但是这种方法使用的时候要求两张图片的大小必须是一样的,否则会一直报错

Traceback (most recent call last):
  File "/Users/running/PycharmProjects/untitled8/test1.py", line 16, in <module>
    get_water()
  File "/Users/running/PycharmProjects/untitled8/test1.py", line 11, in get_water
    dst = cv2.inpaint(src, mask, 3, cv2.INPAINT_NS)
cv2.error: OpenCV(4.1.2) /Users/travis/build/skvark/opencv-python/opencv/modules/photo/src/inpaint.cpp:748: error: (-209:Sizes of input arguments do not match) All the input and output images must have the same size in function 'icvInpaint'
 

可以分别打印一下尺寸看看,发现确实不一样

import cv2
from PIL import Image
# 黑底白字
src = cv2.imread("images/a1.png")  # 默认的彩色图(IMREAD_COLOR)方式读入原始图像
# black.jpg
mask = cv2.imread('images/a2.png', cv2.IMREAD_GRAYSCALE)  # 灰度图(IMREAD_GRAYSCALE)方式读入水印蒙版图像
# 参数:目标修复图像; 蒙版图(定位修复区域); 选取邻域半径; 修复算法(包括INPAINT_TELEA/INPAINT_NS, 前者算法效果较好)
print(src.shape, mask.shape)
dst = cv2.inpaint(src, mask, 3, cv2.INPAINT_NS)
cv2.imwrite('result1.jpg', dst)

(1454, 2182, 3) (1456, 2184)

于是要设置成一样的大小

import cv2
from PIL import Image
src = cv2.imread("images/a1.png")  # 默认的彩色图(IMREAD_COLOR)方式读入原始图像
# black.jpg
mask = cv2.imread('images/a2.png', cv2.IMREAD_GRAYSCALE)  # 灰度图(IMREAD_GRAYSCALE)方式读入水印蒙版图像
# 参数:目标修复图像; 蒙版图(定位修复区域); 选取邻域半径; 修复算法(包括INPAINT_TELEA/INPAINT_NS, 前者算法效果较好)
out2 = cv2.resize(mask,(2182,1454))
out1 = cv2.resize(src,(2182,1454))
print(out1.shape, out2.shape)
dst = cv2.inpaint(out1, out2, 3, cv2.INPAINT_NS)
#
cv2.imwrite('result.jpg', dst)

结果:

这种方式似乎还是可以看到一些水印,我们可以采用下面一种方法。

图片去水印原理

1、标定噪声的特征,使用cv2.inRange二值化标识噪声对图片进行二值化处理,具体代码:cv2.inRange(img, np.array([200, 200, 240]), np.array([255, 255, 255])),把[200, 200, 200]~[255, 255, 255]以外的颜色处理为0;

2、使用OpenCV的dilate方法,扩展特征的区域,优化图片处理效果;

3、使用inpaint方法,把噪声的mask作为参数,推理并修复图片。

实现思路

1、从原图片,截取右下角部分,另存为新图片;

2、识别水印,颜色值为:[200, 200, 200]~[255, 255, 255]

3、去掉水印,还原图片;

4、把原图片、去掉水印的新图片,进行重叠合并;

代码

import cv2
import numpy as np
from PIL import Image
import os
dir = os.getcwd()
path = "a1.jpg"
newPath = "new.jpg"
img = cv2.imread(path, 1)
hight, width, depth = img.shape[0:3]
# 截取
cropped = img[int(hight * 0.8):hight, int(width * 0.7):width]  # 裁剪坐标为[y0:y1, x0:x1]
cv2.imwrite(newPath, cropped)
imgSY = cv2.imread(newPath, 1)
# 图片二值化处理,把[200,200,200]-[250,250,250]以外的颜色变成0
thresh = cv2.inRange(imgSY, np.array([200, 200, 200]), np.array([250, 250, 250]))
# 创建形状和尺寸的结构元素
kernel = np.ones((3, 3), np.uint8)
# 扩展待修复区域
hi_mask = cv2.dilate(thresh, kernel, iterations=10)
specular = cv2.inpaint(imgSY, hi_mask, 5, flags=cv2.INPAINT_TELEA)
cv2.imwrite(newPath, specular)
# 覆盖图片
imgSY = Image.open(newPath)
img = Image.open(path)
img.paste(imgSY, (int(width * 0.7), int(hight * 0.8), width, hight))
img.save(newPath)

输出结果:

到此这篇关于Python去除图片水印实现方法详解的文章就介绍到这了,更多相关Python去除图片水印内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 运用python去除图片水印

    目录 OpenCV + Numpy 函数简介 色彩转换 PIL  + itertools 由于图片水印的种类有很多,今天我们先讲最简单的一种. 即上图中的①类水印,这种水印存在白色背景上的文档里,水印是灰色,需要保留的文字是黑色. 这种通常可以进行简单的亮度/对比度转换,直到水印消失并降低亮度以进行补偿[1].参考别人的方法,我发现可以用多种方法去除水印.大致原理比较相似,下面先讲OpenCV的方法. OpenCV + Numpy 本方法需要使用的库:cv2.numpy.cv2是基于OpenCV

  • 基于python的图片修复程序(实现水印去除)

    图片修复程序-可用于水印去除 在现实的生活中,我们可能会遇到一些美好的或是珍贵的图片被噪声干扰,比如旧照片的折痕,比如镜头上的灰尘或污渍,更或者是某些我们想为我所用但有讨厌水印,那么有没有一种办法可以消除这些噪声呢? 答案是肯定的,依然是被我们用了无数次的OpenCV这款优秀的框架. OpenCV 目前,OpenCV逐步成为一个通用的基础研究和产品开发平台.OpenCV这一名称包含了Open和 Computer Vision两者的意思.实际上,Open指Open Source(开源,即开放源代码

  • Python去除图片水印实现方法详解

    目录 OpenCV介绍 去水印 图片去水印原理 最近写文章遇到图片有水印,如何去除水印呢? 网上找了各种办法,也跑到小红书.抖音等平台找有没有不收费就去水印的网站,但是基本上都是需要VIP会员才可以. 话又说回来这种事情怎么能难倒一个程序员呢?Python的库有这么多肯定有一款适合我吧? 于是找来了OpenCV. OpenCV介绍 文档链接:https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_tutorials.html Opencv(Ope

  • Python实现处理图片水印的方法详解

    原图: 去水印后: 程序非常简单,首先读取图片后,转为HSV通道图像. image = cv2.imread("watermark.png") HSV = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) 参考文末补充内容获取水印处的HSV值的范围 我这张图片的水印HSV值大概范围是 背景HSV值为 黑色正文部分HSV值为 于是: mask = cv2.inRange(HSV, (0, 0, 195), (0, 0, 255)) cv2.imshow(&qu

  • Python OpenCV实现图片预处理的方法详解

    目录 一.图片预处理 1.1 边界填充(padding) 1.2 融合图片(mixup) 1.3 图像阈值 二.滤波器 2.1 均值滤波器 2.2 方框滤波器 2.3 高斯滤波器 2.4 中值滤波 2.5 所有滤波器按照上述顺序输出 一.图片预处理 1.1 边界填充(padding) 方法 : cv2.copyMakeBorder BORDER_REPLICATE:复制法,也就是复制最边缘像素. BORDER_REFLECT:反射法,对感兴趣的图像中的像素在两边进行复制例如:fedcba|abc

  • python为图片和PDF去水印详解

    目录 安装模块 获取图片的 RGB 图片去水印 PDF 去水印 图片转为 pdf 总结 网上下载的 pdf 学习资料有一些会带有水印,非常影响阅读.比如下面的图片就是在 pdf 文件上截取出来的. 安装模块 PIL:Python Imaging Library 是 python 上非常强大的图像处理标准库,但是只能支持 python 2.7,于是就有志愿者在 PIL 的基础上创建了支持 python 3的 pillow,并加入了一些新的特性. pip install pillow pymupdf

  • python实现图片处理和特征提取详解

    这是一张灵异事件图...开个玩笑,这就是一张普通的图片. 毫无疑问,上面的那副图画看起来像一幅电脑背景图片.这些都归功于我的妹妹,她能够将一些看上去奇怪的东西变得十分吸引眼球.然而,我们生活在数字图片的年代,我们也很少去想这些图片是在怎么存储在存储器上的或者去想这些图片是如何通过各种变化生成的. 在这篇文章中,我将带着你了解一些基本的图片特征处理.data massaging 依然是一样的:特征提取,但是这里我们还需要对跟多的密集数据进行处理,但同时数据清理是在数据库.表.文本等中进行.这是如何

  • python爬虫泛滥的解决方法详解

    我们可以把互联网上搬运数据的程序看成小蚂蚁,它们需要采集不同的食物带回洞里存储.但是大家也知道白蚁泛滥的事件,在我们的网络环境里,如果爬虫都集中在某几个位置,最直接的结果就是这个网站的拥挤.对于我们这些网站访问者而言也不是好事情,首先网页的页面会被卡住.网站的管理人员面对爬虫过多,这时候就要进行一系列的限制措施了,这里小编分了两个大的应对方向,从不同的角度进 行分析爬虫过多的解决思路. 一.识别爬虫 1. HTTP请求头 这算是最基础的网络爬虫识别了,正常的网络访问者都是通过浏览器对网站进行访问

  • Python实现图片压缩的案例详解

    目录 1.引言 2.PIL模块 2.1 quality 方式 2.2 thumbnail方式 3.OpenCV模块 3.1 安装 3.2 执行代码 4.总结 1.引言 小屌丝:鱼哥,求助,求助 小鱼:啥情况,这火急火燎的? 小屌丝: 我要在某站进行认证,上传图片时提示,图片超过本站最大xxx限制. 小鱼:就这?? 小屌丝:对啊,我又不想换照片,又不像照片失真. 小鱼:就这要求? 小屌丝:对,能赶紧帮我不处理不? 小鱼:嗯~ 理论上是可以. 小屌丝:什么都别说,我懂,枸杞一袋! 小鱼:懂我,五分钟

  • Python特效之文字成像方法详解

    目录 一.特效预览 二.程序原理 三.程序源码 一.特效预览 处理前 处理后 细节放大后 二.程序原理 1.输入你想隐藏的文字 2.然后写到另一张跟照片同等大小的空白纸张上 3.将相同位置的文字的颜色用照片上相同位置的颜色填充即可 4.然后生成新的图片你听懂了吗 三.程序源码 #!/usr/bin/env python # encoding: utf-8 from PIL import Image, ImageDraw, ImageFont class wordPicture: ''' This

  • Python特效之数字成像方法详解

    目录 一.特效预览 二.程序原理 三.程序源码 一.特效预览 处理前 处理后 细节放大后 二.程序原理 1.将图片转为灰白图片后,将图片分成了三块,明.暗.阴影区域 2.明区域使用空白进行填充 3.阴影区域使用横线进行填充 4.暗区域使用数字进行填充,通过对暗区域的像素进行分类,不同像素使用不同数字进行填充即可 三.程序源码 #!/usr/bin/env python # encoding: utf-8 import cv2 import random import numpy as np cl

随机推荐