Python Panda中索引和选择 series 的数据

前言:

pandas 中的索引意味着只需从系列中选择特定数据。索引可能意味着选择所有数据,其中一些数据来自特定列。索引也可以称为子集选择

使用索引运算符索引系列[]:索引运算符用于引用对象后面的方括号。和索引器.loc.iloc使用索引运算符进行选择。在这个索引运算符中要引用 df[ ]。

# importing pandas module
import pandas as pd  

# 制作数据框
df = pd.read_csv("nba.csv")  

ser = pd.Series(df['Name'])
data = ser.head(10)
data 

现在我们使用索引运算符 [ ] 访问系列的元素。

# 使用索引运算符
data[3:6] 

输出:

索引 series 使用.loc[ ]:此函数通过引用显式索引来选择数据。df.loc索引器以不同于索引运算符的方式选择数据。它可以选择数据子集。

# importing pandas module
import pandas as pd  

# 制作数据框
df = pd.read_csv("nba.csv")  

ser = pd.Series(df['Name'])
data = ser.head(10)
data 

现在我们使用.loc[]函数访问系列的元素。

# 使用 .loc[] 函数
data.loc[3:6]

输出:

索引 series 使用.iloc[ ]:此功能允许我们按位置检索数据。为此,我们需要指定所需数据的位置。索引器df.iloc 非常相似,df.loc 但仅使用整数位置进行选择。

# importing pandas module
import pandas as pd  

# 制作数据框
df = pd.read_csv("nba.csv")  

ser = pd.Series(df['Name'])
data = ser.head(10)
data 

现在我们使用.iloc[]函数访问 Series 的元素。

# 使用 .iloc[] 函数
data.iloc[3:6]

输出 :

到此这篇关于Python Panda中索引和选择 series 的数据的文章就介绍到这了,更多相关Python series 数据内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 在python中pandas的series合并方法

    如下所示: In [3]: import pandas as pd In [4]: a = pd.Series([1,2,3]) In [5]: b = pd.Series([2,3,4]) In [6]: c = pd.DataFrame([a,b]) In [7]: c Out[7]: 0 1 2 0 1 2 3 1 2 3 4 不过pandas直接用列表生成dataframe只能按行生成,如果是字典可以按列生成,比如: In [8]: c = pd.DataFrame({'a':a,'b'

  • python pandas 对series和dataframe的重置索引reindex方法

    reindex更多的不是修改pandas对象的索引,而只是修改索引的顺序,如果修改的索引不存在就会使用默认的None代替此行.且不会修改原数组,要修改需要使用赋值语句. series.reindex() import pandas as pd import numpy as np obj = pd.Series(range(4), index=['d', 'b', 'a', 'c']) print obj d 0 b 1 a 2 c 3 dtype: int64 print obj.reinde

  • Python数据分析 Pandas Series对象操作

    目录 一.Pandas Series对象 Series数据结构 创建Series对象 二.Series对象的基本操作 Series 常用属性 Series 常用方法 Series 运算 一.Pandas Series对象 Pandas 是基于 NumPy 设计实现的 Python 数据分析库,Pandas 提供了大量的能让我们高效处理数据的函数和方法,也纳入了很多数据处理的库以及一些数据模型,可以说非常强大. 可以使用以下命令进行安装: conda install pandas # 或 pip

  • Python Pandas教程之series 上的转换操作

    前言: 在转换操作中,我们执行各种操作,例如更改系列的数据类型,将系列更改为列表等.为了执行转换操作,我们有各种有助于转换的功能,例如.astype()等.tolist(). 代码#1: # 使用 astype 转换 series 数据类型的 Python 程序 # importing pandas module import pandas as pd # 从 url 读取 csv 文件 data = pd.read_csv("nba.csv") # 删除空值列以避免错误 data.d

  • Python Pandas学习之series的二元运算详解

    目录 二元运算 series 的二元运算 series 上的二元运算方法 二元运算 二元运算是指由两个元素形成第三个元素的一种规则,例如数的加法及乘法;更一般地,由两个集合形成第三个集合的产生方法或构成规则称为二次运算. 二元运算(Binary operation)作用于两个对象的运算.如任意二数相加或相乘而得另一数:任意二集合相交或相并而得另一集合:任意一个多行矩阵与一个多列矩阵相乘而得另一矩阵:任意二函数合成而为另一函数,以上加.乘.交.并,积及合成均属二元运算  . series 的二元运

  • python-pandas创建Series数据类型的操作

    1.什么是pandas 2.查看pandas版本信息 print(pd.__version__) 输出: 0.24.1 3.常见数据类型 常见的数据类型: - 一维: Series - 二维: DataFrame - 三维: Panel - - 四维: Panel4D - - N维: PanelND - 4.pandas创建Series数据类型对象 1). 通过列表创建Series对象 array = ["粉条", "粉丝", "粉带"] # 如

  • python pandas中对Series数据进行轴向连接的实例

    有时候我们想要的数据合并结果是数据的轴向连接,在pandas中这可以通过concat来实现.操作的对象通常是Series. Ipython中的交互代码如下: In [17]: from pandas import Series,DataFrame In [18]: series1 = Series(range(2),index = ['a','b']) In [19]: series2 = Series(range(3),index = ['c','d','e']) In [20]: serie

  • 使用python计算方差方式——pandas.series.std()

    目录 如何计算方差 Python计算方差.标准差 方差.标准差 1.方差 2.标准差 如何计算方差 简单展示一下pandas里怎么计算方差: 官方文档: def def_std(df):   for ix,row in df.iterrows():     std = row.std()     df.loc[ix,"std"] = std   return df Python计算方差.标准差 方差.标准差 1.离散程度的测度值之一 2.最常用的测度值 3.反应了数据的分布 4.反应了

  • Python3.5 Pandas模块之Series用法实例分析

    本文实例讲述了Python3.5 Pandas模块之Series用法.分享给大家供大家参考,具体如下: 1.Pandas模块引入与基本数据结构 2.Series的创建 #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:ZhengzhengLiu #模块引入 import numpy as np import pandas as pd from pandas import Series,DataFrame #1.Series通过numpy一

  • Python Panda中索引和选择 series 的数据

    前言: pandas 中的索引意味着只需从系列中选择特定数据.索引可能意味着选择所有数据,其中一些数据来自特定列.索引也可以称为子集选择. 使用索引运算符索引系列[]:索引运算符用于引用对象后面的方括号.和索引器.loc还.iloc使用索引运算符进行选择.在这个索引运算符中要引用 df[ ]. # importing pandas module import pandas as pd # 制作数据框 df = pd.read_csv("nba.csv") ser = pd.Series

  • python pandas中索引函数loc和iloc的区别分析

    目录 前言 1.直接使用行或者列标签 2.loc函数 3.iloc函数 总结 前言 使用pandas进行数据分析的时候,我们经常需要对DataFrame的行或者列进行索引.使用pandas进行索引的方法主要有三种:直接使用行或者列标签.loc函数和iloc函数. 举个简单的例子: import numpy as np import pandas as pd df = pd.DataFrame({"Fruits":["apple","pear",&

  • Layui弹框中数据表格中可双击选择一条数据的实现

    Layui提供的功能如下(预览) 可自行查看:layui官网此模块的链接 着急看双击选中 直接看标黄色部分 假设这是个弹窗里的表格和数据点击圆圈,圆圈变绿则为选中,选中后点击上方查看数据按钮(实际中是确认按钮,实际中点击确认按钮后会关闭弹窗并把json串带到原本页面中) Layui提供的代码如下(查看代码) <body> <!-- 表格空架子 --> <table class="layui-hide" id="test" lay-fil

  • Python数据分析中Groupby用法之通过字典或Series进行分组的实例

    在数据分析中有时候需要自己定义分组规则 这里简单介绍一下用一个字典实现分组 people=DataFrame( np.random.randn(5,5), columns=['a','b','c','d','e'], index=['Joe','Steve','Wes','Jim','Travis'] ) mapping={'a':'red','b':'red','c':'blue','d':'blue','e':'red','f':'orange'} by_column=people.grou

  • python获取元素在数组中索引号的方法

    本文实例讲述了python获取元素在数组中索引号的方法.分享给大家供大家参考.具体如下: 这里python是通过index方法获取索引号的 li = ['a', 'b', 'new', 'D', 'z', 'example', 'new', 'two', 'elements'] print li.index("example") print li.index("new") print li.index("z") print "c&quo

  • 如何在python中实现随机选择

    这篇文章主要介绍了如何在python中实现随机选择,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 想从一个序列中随机抽取若干元素,或者想生成几个随机数. random 模块有大量的函数用来产生随机数和随机选择元素.比如,要想从一个序列中随机的抽取一个元素,可以使用random.choice() : >>> import random >>> values = [1, 2, 3, 4, 5, 6] >>>

  • python 中关于pycharm选择运行环境的问题

    一直用pycharm写代码 一直用anaconda管理python环境 但是今天我居然发现我不会更改pycharm当前的运行环境到我新建的anaconda environment中! 配置: 系统: win10: GPU:NVIDIA GeForce GTX 1050 Ti 管理平台:anaconda3 IDE:Pycharm 问题 我的anaconda里面有三个环境,第一个是自定义环境,python3.6的,里面的库最多:第二个是我用于学习深度学习的,python3.5,主要是目前cuda在w

  • Python 选择排序中的树形选择排序

    目录 1.引言 2.问题描述 3.解决方案 4.结语 1.引言 选择排序里面主要讲了三个排序,分别是简单选择排序.树形选择排序.堆排序.今天这篇文章主要讲树形选择排序,树形选择排序也被称为锦标赛排序,树形选择排序运用了锦标赛的思想进行排序,树形选择排序是指首先对n个记录的关键字进行两两比较,然后在n/2个较小者之间再进行两两比较,如此重复,直至选出最小的记录为止. 2.问题描述 给定一个序列,我们将如何用树形选择排序来将它排序呢,下面将结合图形和文字一起讲述. 示例1:对数据表A=(73,45,

  • python pandas中DataFrame类型数据操作函数的方法

    python数据分析工具pandas中DataFrame和Series作为主要的数据结构. 本文主要是介绍如何对DataFrame数据进行操作并结合一个实例测试操作函数. 1)查看DataFrame数据及属性 df_obj = DataFrame() #创建DataFrame对象 df_obj.dtypes #查看各行的数据格式 df_obj['列名'].astype(int)#转换某列的数据类型 df_obj.head() #查看前几行的数据,默认前5行 df_obj.tail() #查看后几

随机推荐