Python pyecharts 数据可视化模块的配置方法

目录
  • 1. pyecharts 模块介绍
  • 2. pyecharts 模块安装
  • 3. pyecharts 配置选项
    • 3.1 全局配置选项
    • 3.2 系列配置选项
  • 4. 基础折线图的构建
    • 4.1 基本使用流程
  • 5. 基础地图构建
    • 5.1 基本使用流程
    • 5.2 实现国内疫情地图
    • 5.3 实现省级疫情地图
  • 6. 基础柱状图构建
    • 6.1 基本使用流程
    • 6.2 基础时间线柱状图
    • 6.3 实现动态 GDP 柱状图

1. pyecharts 模块介绍

Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。

pyecharts 官网:https://pyecharts.org/#/zh-cn/

pyecharts 画廊地址:https://gallery.pyecharts.org/#/README

2. pyecharts 模块安装

pip install pyecharts

3. pyecharts 配置选项

pyecharts 模块中有很多配置选项,常用到两个类别的选项:全局配置选项和系列配置选项。

3.1 全局配置选项

全局配置选项可以通过 set_global_opts 方法来进行配置,通常对图表的一些通用的基础的元素进行配置,例如标题、图例、工具箱、鼠标移动效果等等,它们与图表的类型无关。

示例代码:通过折线图对象对折线图进行全局配置

from pyecharts.charts import Line
from pyecharts.options import TitleOpts, LegendOpts, ToolboxOpts, VisualMapOpts

# 获取折线图对象
line = Line()

# 对折线图进行全局配置
line.set_global_opts(
    # 设置标题、标题的位置...
    title_opts=TitleOpts("国家GDP展示", pos_left="center", pos_bottom="1%"),
    # 设置图例是展示的...
    legend_opts=LegendOpts(is_show=True),
    # 设置工具箱是展示的
    toolbox_opts=ToolboxOpts(is_show=True),
    # 设置视觉映射是展示的
    visualmap_opts=VisualMapOpts(is_show=True)
)

3.2 系列配置选项

系列配置选项是针对某个具体的参数进行配置,可以去 pyecharts 官网进行了解。

4. 基础折线图的构建

4.1 基本使用流程

1.导包,导入 Line 功能构建折线图对象

from pyecharts.charts import Line
from pyecharts.options import TitleOpts, LegendOpts, ToolboxOpts, VisualMapOpts

2.获取折线图对象

line = Line()

3.添加 x、y 轴数据(添加系列配置)

line.add_xaxis(["中国", "美国", "英国"])
line.add_yaxis("GDP", [30, 20, 10])

4.添加全局配置

line.set_global_opts(
    # 设置标题、标题的位置...
    title_opts=TitleOpts("国家GDP展示", pos_left="center", pos_bottom="1%"),
    # 设置图例是展示的...
    legend_opts=LegendOpts(is_show=True),
    # 设置工具箱是展示的
    toolbox_opts=ToolboxOpts(is_show=True),
    # 设置视觉映射是展示的
    visualmap_opts=VisualMapOpts(is_show=True)
)

5.生成图表(通过 render 方法将代码生成图像)

line.render()

4.2 实现2020年美印日确诊人数对比折线图

import json
from pyecharts.charts import Line
# 获取不同国家疫情时间
from pyecharts.options import TitleOpts, LabelOpts
def getdata(file):
    # 处理数据
    try:
        f = open(file, 'r', encoding='utf8')
    except FileNotFoundError as e:
        print(f"文件不存在,具体错误为:{e}")
    else:
        data = f.read()

        # JSON 转 Python 字典
        dict = json.loads(data)

        # 获取 trend
        trend_data = dict['data'][0]['trend']

        # 获取日期数据,用于 x 轴(只拿2020年的数据)
        x_data = trend_data['updateDate'][:314]

        # 获取确认数据,用于 y 轴
        y_data = trend_data['list'][0]['data'][:314]

        # 返回结果
        return x_data, y_data
    finally:
        f.close()

# 获取美国数据
us_x_data, us_y_data = getdata("E:\\折线图数据\\美国.txt")

# 获取印度数据
in_x_data, in_y_data = getdata("E:\\折线图数据\\印度.txt")

# 获取日本数据
jp_x_data, jp_y_data = getdata("E:\\折线图数据\\日本.txt")

# 生成图表
line = Line()

# 添加 x 轴数据(日期,公用数据,不同国家都一样)
line.add_xaxis(us_x_data)

# 添加 y 轴数据(设置 y 轴的系列配置,将标签不显示)
line.add_yaxis("美国确诊人数", us_y_data, label_opts=LabelOpts(is_show=False))  # 添加美国数据
line.add_yaxis("印度确诊人数", in_y_data, label_opts=LabelOpts(is_show=False))  # 添加印度数据
line.add_yaxis("日本确诊人数", jp_y_data, label_opts=LabelOpts(is_show=False))  # 添加日本数据

# 配置全局选项
line.set_global_opts(
    # 设置标题
    title_opts=TitleOpts("2020年美日印三国确诊人数对比折线图", pos_left="center", pos_bottom="1%"),

)

# 生成图表
line.render()

5. 基础地图构建

5.1 基本使用流程

1.导包,导入 Map 功能获取地图对象

from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts

2.获取地图对象

map = Map()

3.准备好数据

data = [
    ("北京", 99),
    ("上海", 199),
    ("广州", 299),
    ("湖南", 199),
    ("安徽", 99),
    ("湖北", 399),
]

4.添加数据到地图对象中

# 地图名称、传入的数据、地图类型(默认是中国地图)
map,add("地图", data, "china")

5.添加全局配置

map.set_global_opts(
    # 设置视觉映射配置
    visualmap_opts=VisualMapOpts(
        # 打开视觉映射(可能不精准,因此可以开启手动校准)
        is_show=True,
        # 开启手动校准范围
        is_piecewise=True,
        # 设置要校准参数的具体范围
        pieces=[
            {"min": 1, "max": 9, "label": "1~9人", "color": "#CCFFFF"},
            {"min": 10, "max": 99, "label": "10~99人", "color": "#FFFF99"},
            {"min": 100, "max": 199, "label": "100~199人", "color": "#FF9966"},
            {"min": 200, "max": 299, "label": "200~299人", "color": "#FF6666"},
            {"min": 300, "label": "300人以上", "color": "#CC3333"},
        ]
    )
)

6.生成地图

map.render()

5.2 实现国内疫情地图

import json
from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts, TitleOpts, LegendOpts

# 读取数据
f = open("E:\\地图数据\\疫情.txt", 'r', encoding='utf8')
str_json = f.read()

# 关闭文件
f.close()

# JSON 转 python 字典
data_dict = json.loads(str_json)

# 取到各省数据
province_data_list = data_dict['areaTree'][0]['children']

# 组装每个省份和确诊人数为元组,并封装到列表内
data_list = []
for province_data in province_data_list:
    province_name = province_data['name']
    province_total_confirm = province_data['total']['confirm']
    data_list.append((province_name, province_total_confirm))

# 创建地图对象
map = Map()

# 添加数据
map.add("各省确诊总人数", data_list, "china")

# 设置全局配置,定制分段的视觉映射
map.set_global_opts(
    title_opts=TitleOpts('全国疫情地图', pos_left='center', pos_bottom='1%'),
    legend_opts=LegendOpts(is_show=True),
    visualmap_opts=VisualMapOpts(
        is_show=True,
        is_piecewise=True,
        pieces=[
            {"min": 1, "max": 9, "label": "1~9人", "color": "#CCFFFF"},
            {"min": 10, "max": 99, "label": "10~99人", "color": "#FFFF99"},
            {"min": 100, "max": 499, "label": "100~499人", "color": "#FF9966"},
            {"min": 500, "max": 999, "label": "500~999人", "color": "#FF6666"},
            {"min": 1000, "max": 9999, "label": "1000~9999人", "color": "#CC3333"},
            {"min": 10000, "label": "10000人以上", "color": "#990033"}
        ]
    )
)

# 绘图
map.render()

5.3 实现省级疫情地图

import json
from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts, TitleOpts, LegendOpts

# 读取数据
f = open("E:\\地图数据\\疫情.txt", 'r', encoding='utf8')
str_json = f.read()

# 关闭文件
f.close()

# JSON 转 python 字典
data_dict = json.loads(str_json)

# 取到河南省数据
city_data_list = data_dict['areaTree'][0]['children'][3]['children']

# 组装每个市和确诊人数为元组,并封装到列表内
data_list = []
for city_data in city_data_list:
    city_name = city_data['name'] + "市"
    city_total_confirm = city_data['total']['confirm']
    data_list.append((city_name, city_total_confirm))

# 创建地图对象
map = Map()

# 添加数据
map.add("各市确诊总人数", data_list, "河南")

# 设置全局配置,定制分段的视觉映射
map.set_global_opts(
    title_opts=TitleOpts('河南省疫情地图', pos_left='center', pos_bottom='1%'),
    legend_opts=LegendOpts(is_show=True),
    visualmap_opts=VisualMapOpts(
        is_show=True,
        is_piecewise=True,
        pieces=[
            {"min": 1, "max": 9, "label": "1~9人", "color": "#CCFFFF"},
            {"min": 10, "max": 99, "label": "10~99人", "color": "#FFFF99"},
            {"min": 100, "max": 499, "label": "100~499人", "color": "#FF9966"},
            {"min": 500, "max": 999, "label": "500~999人", "color": "#FF6666"},
            {"min": 1000, "max": 9999, "label": "1000~9999人", "color": "#CC3333"},
            {"min": 10000, "label": "10000人以上", "color": "#990033"}
        ]
    )
)

# 绘图
map.render()

6. 基础柱状图构建

6.1 基本使用流程

1.导包,导入 Bar 功能获取地图对象

from pyecharts.charts import Bar
from pyecharts.options import *

2.获取地图对象

bar = Bar()

3.添加 x 和 y 轴数据

# 添加 x 轴数据
bar.add_xaxis(["中国", "英国", "美国"])
# 添加 y 轴数据
bar.add_yaxis("GDP", [30, 20, 10])

4.添加全局配置

bar.set_global_opts(
    title_opts=TitleOpts("基础柱状图", pos_left='center', pos_bottom='1%')
)

5.生成地图

bar.render()

6.反转 xy 轴

bar.reversal_axis()

7.将数值标签添设置到右侧

bar.add_yaxis("GDP", [30, 20, 10], label_opts=LabelOpts(position='right'))

6.2 基础时间线柱状图

柱状图描述的是分类数据,但很难动态的描述一个趋势性的数据,为此 pyecharts 中提供了一种解决方案时间线。

如果说一个 Bar、Line 对象是一张图表的话,时间线就是创建一个一维的 x 轴,轴上的每一个点就是一个图表对象。

创建时间线的基础流程:

1.导包,导入时间线 Timeline

from pyecharts.charts import Bar, Timeline
from pyecharts.options import *

2.准备好图表对象并添加好数据

bar1 = Bar()
bar1.add_xaxis(["中国", "英国", "美国"])
bar1.add_yaxis("GDP", [30, 20, 10], label_opts=LabelOpts(position='right'))
bar1.reversal_axis()

bar2 = Bar()
bar2.add_xaxis(["中国", "英国", "美国"])
bar2.add_yaxis("GDP", [50, 20, 30], label_opts=LabelOpts(position='right'))
bar2.reversal_axis()

bar3 = Bar()
bar3.add_xaxis(["中国", "英国", "美国"])
bar3.add_yaxis("GDP", [60, 30, 40], label_opts=LabelOpts(position='right'))
bar3.reversal_axis()

3.创建时间线对象 Timeline

timeline = Timeline()

4.将图表添加到 Timeline 对象中

# 添加图表到时间线中(图表对象,点名称)
timeline.add(bar1, "2020年GDP")
timeline.add(bar2, "2021年GDP")
timeline.add(bar3, "2022年GDP")

5.通过时间线绘图

timeline.render()

6.设置自动播放

timeline.add_schema(
    play_interval=1000,      # 自动播放的时间间隔,单位毫秒
    is_timeline_show=True,  # 是否显示自动播放的时候,显示时间线(默认 True)
    is_auto_play=True,       # 是否在自动播放(默认 False)
    is_loop_play=True        # 是否循环自动播放(默认 True)
)

7.设置时间线主题

# 导入 ThemeType
from pyecharts.globals import ThemeType

# 创建时间线对象时,设置主题参数
timeline = Timeline({"theme": ThemeType.DARK})

主题参数如下:

6.3 实现动态 GDP 柱状图

import json
from pyecharts.charts import Bar, Timeline
from pyecharts.options import *
from pyecharts.globals import ThemeType

# 读取数据
f = open("E:\\动态柱状图数据\\1960-2019全球GDP数据.csv", 'r', encoding='GB2312')
data_lines = f.readlines()

# 关闭文件
f.close()

# 删除第一条数据
data_lines.pop(0)

# 将数据转化为字典才能出,格式为 {年份1: [[国家1, GDP], [国家2, GDP]], 年份2: [国家, GDP], ...}
data_dict = dict()

for line in data_lines:
    year = int(line.split(',')[0])  # 年份
    country = line.split(',')[1]  # 国家
    gdp = float(line.split(',')[2])  # gdp 数据,通过 float 强制转换可以把带有科学计数法的数字转换为普通数字

    try:  # 如果 key 不存在,则会抛出异常 KeyError
        data_dict[year].append([country, gdp])
    except KeyError:
        data_dict[year] = [[country, gdp]]

# 排序年份(字典对象的 key 可能是无序的)
sorted_year_list = sorted(data_dict.keys())

# 创建时间线对象
timeline = Timeline({"theme": ThemeType.LIGHT})

# 组装数据到 Bar 对象中,并添加到 timeline 中
for year in sorted_year_list:
    data_dict[year].sort(key=lambda element: element[1], reverse=True)
    # 该年份GDP前八的国家
    year_data = data_dict[year][:8]
    x_data = []
    y_data = []
    for country_gdp in year_data:
        x_data.append(country_gdp[0])
        y_data.append(country_gdp[1] / 100000000)
    # 创建柱状图
    bar = Bar()
    x_data.reverse()
    y_data.reverse()
    # 添加 x y 轴数据
    bar.add_xaxis(x_data)
    bar.add_yaxis("GDP(亿)", y_data, label_opts=LabelOpts(position='right'))
    # 反转 x y 轴
    bar.reversal_axis()
    # 设置每一年的图表的标题
    bar.set_global_opts(
        title_opts=TitleOpts(f"{year}年GDP全球前8国家", pos_left='5%')
    )
    # 将 bar 对象添加到 timeline 中
    timeline.add(bar, year)

# 设置自动播放参数
timeline.add_schema(
    play_interval=1000,      # 自动播放的时间间隔,单位毫秒
    is_timeline_show=True,   # 是否显示自动播放的时候,显示时间线(默认 True)
    is_auto_play=True,       # 是否在自动播放(默认 False)
    is_loop_play=True        # 是否循环自动播放(默认 True)
)

# 通过时间线绘图
timeline.render("1960~2019全球GDP前8国家.html")

到此这篇关于Python pyecharts 数据可视化模块的文章就介绍到这了,更多相关Python pyecharts 数据可视化内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python可视化神器pyecharts绘制雷达图

    目录 雷达图 雷达图模板系列 基础雷达图 单例雷达图 空气质量模板 颜色雷达图 雷达图 雷达图是以从同一点开始的轴上表示的三个或更多个定量变量的二维图表的形式显示多变量数据的图形方法.轴的相对位置和角度通常是无信息的. 雷达图也称为网络图,蜘蛛图,星图,蜘蛛网图,不规则多边形,极坐标图或Kiviat图.它相当于​ ​平行坐标图​​,轴径向排列. 平行坐标图: 平行坐标图是一种通常的可视化方法, 用于对 高维几何 和 多元数据 的可视化. 为了表示在高维空间的一个点集,在N条平行的线的背景下,(一

  • Python可视化神器pyecharts绘制折线图详情

    目录 折线图介绍 折线图模板系列 双折线图(气温最高最低温度趋势显示) 面积折线图(紧贴Y轴) 简单折线图(无动态和数据标签) 连接空白数据折线图 对数轴折线图示例 折线图堆叠(适合多个折线图展示) 二维曲线折线图(两个数据) 多维度折线图(颜色对比) 阶梯折线图 js高渲染折线图 折线图介绍 折线图和柱状图一样是我们日常可视化最多的一个图例,当然它的优势和适用场景相信大家肯定不陌生,要想快速的得出趋势,抓住趋势二字,就会很快的想到要用折线图来表示了.折线图是通过直线将这些点按照某种顺序连接起来

  • Python可视化神器pyecharts绘制桑基图

    目录 桑基图 桑基图系列模板 第一个桑基图 复杂桑基图 桑基图 桑基图(Sankey diagram),即桑基能量分流图,也叫桑基能量平衡图.它是一种特定类型的流程图,图中延伸的分支的宽度对应数据流量的大小,通常应用于​​能源​​​.材料成分.​​金融​​​等数据的可视化分析.因1898年Matthew Henry Phineas Riall Sankey绘制的“​​蒸汽机​​的能源效率图”而闻名,此后便以其名字命名为“桑基图”. 桑基图最明显的特征就是,始末端的分支宽度总和相等,即所有主支宽度

  • python中第三方库pyecharts的使用详解

    与pyecharts有关的两个网站:官方网站:pyecharts - A Python Echarts Plotting Library built with love.,画廊功能的网站: Document Description https://gallery.pyecharts.org/#/ 在画廊网站中可以查看各个图的实例 pyecharts的作用:用来做数据图表 做一个图的步骤: 1.导包 2.创建一个图对象 3.添加数据 4.设置全局配置项 5.通过render方法将代码生成图像 1.

  • Python可视化神器pyecharts绘制饼状图

    目录 饼图 概念 用法 优势 饼状图系列模板 简单多色饼状图(类别可配色) 象形饼状图 环形饼状图 不调色饼状图(大小位置可控制) 数据类别大量显示柱状图 多饼状图同时显示 玫瑰饼状图双图显示 环形饼状图(数据标签左放) 饼图 概念 饼图(pie chart)是用圆形及圆内扇形的角度来表示数值大小的图形,它主要用于表示一个样本(或总体)中各组成部分的数据占全部数据的比例.仅排列在工作表的一列或一行中的数据可以绘制到饼图中.饼图显示一个数据系列 (数据系列:在图表中绘制的相关数据点,这些数据源自数

  • Python应用之利用pyecharts画中国地图

    目录 1.安装 pycharts包的安装 在绘制地图时,需要导入相应的地图文件包 2.绘制地图 pyecharts的坑---“画图不显示“ 下面为大家举个例子 原因如下 这段时间在爬取了杭州某网站发布的二手房信息,在作图的时候发现在地图呈现上还是有欠缺,这里就把用到的贴出来,提升一下记忆. 之前有接触用Basemap绘制地图,但是在涉及到中国行政划分上感觉不是很方便.Echarts在数据可视化上应用比较广泛,这里采用pyecharts生成echarts风格的图表. 环境:pycharm:pyth

  • Python pyecharts模块安装与入门教程

    目录 pyecharts产生背景 一.pyecharts模块安装 二.pyecharts入门 1.基础折线图 2.pyecharts配置选项 pyecharts产生背景 Echarts是由百度开源的数据可视化,凭借良好的交互性和精巧的图表设计,得到众多开发者的认可,而python很适合用于数据处理,数据分析遇到数据可视化时pyecharts就产生了. 官网链接:https://pyecharts.org/#/ 画廊pyecharts-gallery pyecharts支持的图表众多,官方提供了画

  • Python可视化神器pyecharts之绘制箱形图

    目录 箱形图 概念 用处 箱形图系列模板 第一个箱形图 复杂一点的图例 箱形图 概念 后面的图形都是一些专业的统计图形,当然也会是我们可视化的对象. 箱形图(Box-plot)又称为盒须图.盒式图或箱线图,是一种用作显示一组数据分散情况资料的统计图.因形状如箱子而得名.在各种领域也经常被使用,常见于​​品质管理​​.它主要用于反映原始数据分布的特征,还可以进行多组数据分布特征的比 较.箱线图的绘制方法是:先找出一组数据的上边缘.下边缘.中位数和两个四分位数:然后, 连接两个四分位数画出箱体:再将

  • Python pyecharts 数据可视化模块的配置方法

    目录 1. pyecharts 模块介绍 2. pyecharts 模块安装 3. pyecharts 配置选项 3.1 全局配置选项 3.2 系列配置选项 4. 基础折线图的构建 4.1 基本使用流程 5. 基础地图构建 5.1 基本使用流程 5.2 实现国内疫情地图 5.3 实现省级疫情地图 6. 基础柱状图构建 6.1 基本使用流程 6.2 基础时间线柱状图 6.3 实现动态 GDP 柱状图 1. pyecharts 模块介绍 Echarts 是一个由百度开源的数据可视化,凭借着良好的交互

  • Python pyecharts数据可视化实例详解

    目录 一.数据可视化 1.pyecharts介绍 2.初入了解 (1).快速上手 (2).简单的配置项介绍 3.案例实战 (1).柱状图Bar (2).地图Map (3).饼图Pie (4).折线图Line (5).组合图表 二.案例数据获取 总结 一.数据可视化 1.pyecharts介绍 官方网址:https://pyecharts.org/#/zh-cn/intro 概况: Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,使用JavaScript实现的.

  • Python Matplotlib数据可视化模块使用详解

    目录 前言 1 matplotlib 开发环境搭建 2 绘制基础 2.1 绘制直线 2.2 绘制折线 2.3 设置标签文字和线条粗细 2.4 绘制一元二次方程的曲线 y=x^2 2.5 绘制正弦曲线和余弦曲线 3 绘制散点图 4 绘制柱状图 5 绘制饼状图 6 绘制直方图 7 绘制等高线图 8 绘制三维图 总结 本文主要介绍python 数据可视化模块 Matplotlib,并试图对其进行一个详尽的介绍. 通过阅读本文,你可以: 了解什么是 Matplotlib 掌握如何用 Matplotlib

  • 利用Python代码实现数据可视化的5种方法详解

    前言 数据科学家并不逊色于艺术家.他们用数据可视化的方式绘画,试图展现数据内隐藏的模式或表达对数据的见解.更有趣的是,一旦接触到任何可视化的内容.数据时,人类会有更强烈的知觉.认知和交流. 数据可视化是数据科学家工作中的重要组成部分.在项目的早期阶段,你通常会进行探索性数据分析(Exploratory Data Analysis,EDA)以获取对数据的一些理解.创建可视化方法确实有助于使事情变得更加清晰易懂,特别是对于大型.高维数据集.在项目结束时,以清晰.简洁和引人注目的方式展现最终结果是非常

  • Python实现数据可视化看如何监控你的爬虫状态【推荐】

    今天主要是来说一下怎么可视化来监控你的爬虫的状态. 相信大家在跑爬虫的过程中,也会好奇自己养的爬虫一分钟可以爬多少页面,多大的数据量,当然查询的方式多种多样.今天我来讲一种可视化的方法. 关于爬虫数据在mongodb里的版本我写了一个可以热更新配置的版本,即添加了新的爬虫配置以后,不用重启程序,即可获取刚刚添加的爬虫的状态数据. 1.成品图 这个是监控服务器网速的最后成果,显示的是下载与上传的网速,单位为M.爬虫的原理都是一样的,只不过将数据存到InfluxDB的方式不一样而已, 如下图. 可以

  • python Matplotlib数据可视化(1):简单入门

    1 matplot入门指南 matplotlib是Python科学计算中使用最多的一个可视化库,功能丰富,提供了非常多的可视化方案,基本能够满足各种场景下的数据可视化需求.但功能丰富从另一方面来说也意味着概念.方法.参数繁多,让许多新手望而却步. 据我了解,大部分人在对matplotlib接触不深时都是边画图边百度,诸如这类的问题,我想大家都似曾相识:Python如何画散点图,matplotlib怎么将坐标轴标签旋转45度,怎么设置图例字体大小等等.无论针对哪一个问题,往往都有多种解决方法,搜索

  • python Matplotlib数据可视化(2):详解三大容器对象与常用设置

    上一篇博客中说到,matplotlib中所有画图元素(artist)分为两类:基本型和容器型.容器型元素包括三种:figure.axes.axis.一次画图的必经流程就是先创建好figure实例,接着由figure去创建一个或者多个axes,然后通过axes实例调用各种方法来添加各种基本型元素,最后通过axes实例本身的各种方法亦或者通过axes获取axis实例实现对各种元素的细节操控. 本篇博客继续上一节的内容,展开介绍三大容器元素创建即通过三大容器可以完成的常用设置. 1 figure 1.

  • 利用Python进行数据可视化的实例代码

    目录 前言 首先搭建环境 实例代码 例子1: 例子2: 例子3: 例子4: 例子5: 例子6: 总结 前言 前面写过一篇用Python制作PPT的博客,感兴趣的可以参考 用Python制作PPT 这篇是关于用Python进行数据可视化的,准备作为一个长贴,随时更新有价值的Python可视化用例,都是网上搜集来的,与君共享,本文所有测试均基于Python3. 首先搭建环境 $pip install pyecharts -U $pip install echarts-themes-pypkg $pi

  • Python疫情数据可视化分析

    目录 前言 功能函数 读取文件 更换列名,便于查看 全球疫情趋势 筛选出中国的数据 利用groupby按照省统计确诊死亡治愈病例的总和 确诊人数排名前15的国家 这里用pyecharts库画图,绘制的玫瑰图,rosetype 中国确诊人数前十的省 区域图 热力图 全球死亡人数地理分布情况 全球疫情频率直方图 其他图 陕西确诊病例饼图 陕西省确诊病例数据分布 中国治愈病例玫瑰图 前言 本项目主要通过python的matplotlib pandas pyecharts等库对疫情数据进行可视化分析 数

  • 使用Python中的tkinter模块作图的方法

    python简述: Python是一种解释型.面向对象.动态数据类型的高级程序设计语言.自从20世纪90年代初Python语言诞生至今,它逐渐被广泛应用于处理系统管理任务和Web编程.Python[1]已经成为最受欢迎的程序设计语言之一.2011年1月,它被TIOBE编程语言排行榜评为2010年度语言.自从2004年以后,python的使用率是呈线性增长. tkinter模块介绍 tkinter模块("Tk 接口")是Python的标准Tk GUI工具包的接口.Tk和Tkinter可以

随机推荐