MongoDB教程之索引介绍

一、索引基础:

MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令:
 

代码如下:

> db.test.ensureIndex({"username":1})

可以通过下面的名称查看索引是否已经成功建立:
 

代码如下:

> db.test.getIndexes()

删除索引的命令是:
 

代码如下:

> db.test.dropIndex({"username":1})

在MongoDB中,我们同样可以创建复合索引,如:
 

代码如下:

-- 数字1表示username键的索引按升序存储,-1表示age键的索引按照降序方式存储。
    > db.test.ensureIndex({"username":1, "age":-1})

该索引被创建后,基于username和age的查询将会用到该索引,或者是基于username的查询也会用到该索引,但是只是基于age的查询将不会用到该复合索引。因此可以说,如果想用到复合索引,必须在查询条件中包含复合索引中的前N个索引列。然而如果查询条件中的键值顺序和复合索引中的创建顺序不一致的话,MongoDB可以智能的帮助我们调整该顺序,以便使复合索引可以为查询所用。如:
 

代码如下:

> db.test.find({"age": 30, "username": "stephen"})

对于上面示例中的查询条件,MongoDB在检索之前将会动态的调整查询条件文档的顺序,以使该查询可以用到刚刚创建的复合索引。
    我们可以为内嵌文档创建索引,其规则和普通文档没有任何差别,如:
 

代码如下:

> db.test.ensureIndex({"comments.date":1})

对于上面创建的索引,MongoDB都会根据索引的keyname和索引方向为新创建的索引自动分配一个索引名,下面的命令可以在创建索引时为其指定索引名,如:
 

代码如下:

> db.test.ensureIndex({"username":1},{"name":"testindex"})

随着集合的增长,需要针对查询中大量的排序做索引。如果没有对索引的键调用sort,MongoDB需要将所有数据提取到内存并排序。因此在做无索引排序时,如果数据量过大以致无法在内存中进行排序,此时MongoDB将会报错。
   
二、唯一索引:
    在缺省情况下创建的索引均不是唯一索引。下面的示例将创建唯一索引,如:
 

代码如下:

> db.test.ensureIndex({"userid":1},{"unique":true})

如果再次插入userid重复的文档时,MongoDB将报错,以提示插入重复键,如:
 

代码如下:

> db.test.insert({"userid":5})
    > db.test.insert({"userid":5})
    E11000 duplicate key error index: test.test.$userid_1  dup key: { : 5.0 }

如果插入的文档中不包含userid键,那么该文档中该键的值为null,如果多次插入类似的文档,MongoDB将会报出同样的错误,如:
 

代码如下:

> db.test.insert({"userid1":5})
    > db.test.insert({"userid1":5})
    E11000 duplicate key error index: test.test.$userid_1  dup key: { : null }

如果在创建唯一索引时已经存在了重复项,我们可以通过下面的命令帮助我们在创建唯一索引时消除重复文档,仅保留发现的第一个文档,如:
    --先删除刚刚创建的唯一索引。
 

代码如下:

> db.test.dropIndex({"userid":1})
    --插入测试数据,以保证集合中有重复键存在。
    > db.test.remove()
    > db.test.insert({"userid":5})
    > db.test.insert({"userid":5})   
    --创建唯一索引,并消除重复数据。
    > db.test.ensureIndex({"userid":1},{"unique":true,"dropDups":true})   
    --查询结果确认,重复的键确实在创建索引时已经被删除。
    > db.test.find()
    { "_id" : ObjectId("4fe823c180144abd15acd52e"), "userid" : 5 }

我们同样可以创建复合唯一索引,即保证复合键值唯一即可。如:
 

代码如下:

> db.test.ensureIndex({"userid":1,"age":1},{"unique":true})

三、使用explain:
    explain是非常有用的工具,会帮助你获得查询方面诸多有用的信息。只要对游标调用该方法,就可以得到查询细节。explain会返回一个文档,而不是游标本身。如:
 

代码如下:

> db.test.find().explain()
    {
        "cursor" : "BasicCursor",
        "nscanned" : 1,
        "nscannedObjects" : 1,
        "n" : 1,
        "millis" : 0,
        "nYields" : 0,
        "nChunkSkips" : 0,
        "isMultiKey" : false,
        "indexOnly" : false,
        "indexBounds" : {

}   
    }

explain会返回查询使用的索引情况,耗时和扫描文档数的统计信息。
    "cursor":"BasicCursor"表示没有使用索引。
    "nscanned":1 表示查询了多少个文档。
    "n":1 表示返回的文档数量。
    "millis":0 表示整个查询的耗时。
   
四、索引管理:

system.indexes集合中包含了每个索引的详细信息,因此可以通过下面的命令查询已经存在的索引,如:
 

代码如下:

> db.system.indexes.find()

如果在为已有数据的文档创建索引时,可以执行下面的命令,以使MongoDB在后台创建索引,这样的创建时就不会阻塞其他操作。但是相比而言,以阻塞方式创建索引,会使整个创建过程效率更高,但是在创建时MongoDB将无法接收其他的操作。
 

代码如下:

> db.test.ensureIndex({"username":1},{"background":true})

(0)

相关推荐

  • MongoDB快速入门笔记(四)之MongoDB查询文档操作实例代码

    MongoDB简介 MongoDB 是一个基于分布式文件存储的数据库.由 C++ 语言编写.旨在为 WEB 应用提供可扩展的高性能数据存储解决方案. MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的. 下面给大家介绍MongoDB查询文档操作的实例 先把student删除,再重新插入数据 > db.student.drop() true > db.student.insert([{ "_id" : 1, "

  • MongoDB的基础查询和索引操作方法总结

    查询操作 1.查询所有记录 db.userInfo.find(); 相当于: select* from userInfo; 2.查询去掉后的当前聚集集合中的某列的重复数据 db.userInfo.distinct("name"); 会过滤掉name中的相同数据 相当于: select disttince name from userInfo; 3.查询age = 22的记录 db.userInfo.find({"age": 22}); 相当于: select * f

  • MongoDB查询字段没有创建索引导致的连接超时异常解案例分享

    今天在现场的哥们发来异常,让我解决,错误信息如下: 复制代码 代码如下: HTTP Status 500 - Read operation to server 192.168.1.110:20001 failed on database wpdb; nested exception is com.mongodb.MongoException$Network: Read operation to server 192.168.1.110:20001 failed on database wpdb

  • MongoDB中创建索引需要注意的事项

    上周在 ruby-china 上发了帖子<MongoDB 那些坑>,反映相当热烈,许多回复很有见地,其中一位童鞋深入的提到 MongoDB 建索引方法的问题,引发我更深入的了解了 MongoDB 建索引的方法和一些注意事项. 在 <MongoDB 那些坑>中提到,在前台直接运行建立索引命令的话,将造成整个数据库阻塞,因此索引建议使用 background 的方式建立.但是这也会带来一定的问题,在 2.6 版本之前,在 secondary server 中即使使用 backgroun

  • 1亿条记录的MongoDB数据库随机查询性能测试

    mongdb性能压力测试,随机查询,数据量1亿条记录 操作系统centos6.4x64位 从测试结果看,当mongodb将数据全部载入到内存后,查询速度根据文档的大小,性能瓶颈通常会是在网络流量和CPU的处理性能(该次测试中当数据全部在内存后,纯粹的查询速度可以稳定在10W/S左右,系统load可以维持在1以下,由于此时CPU已经被使用到极限了,当并发再大时load值会直线飙升,性能急剧下降). 压力生成服务器与Mongodb服务器基本配置 cpu型号:Intel(R) Xeon(R) CPU

  • MongoDB查询操作限制返回字段的方法

    映射(projection )声明用来限制所有查询匹配文档的返回字段.projection以文档的形式列举结果集中要包含或者排除的字段.可以指定要包含的字段(例如:{field:1})或者指定要排除的字段(例如:{field:0}).默认_id是包含在结果集合中的,要从结果集中排除_id字段,需要在projection中指定排除_id字段({_id:0}).除了_id字段,不能在一个projection中联合使用包含和排除语意. 返回匹配文档的所有字段: 如果没有指定projection,fin

  • MongoDB学习笔记(六) MongoDB索引用法和效率分析

    MongoDB中的索引其实类似于关系型数据库,都是为了提高查询和排序的效率的,并且实现原理也基本一致.由于集合中的键(字段)可以是普通数据类型,也可以是子文档.MongoDB可以在各种类型的键上创建索引.下面分别讲解各种类型的索引的创建,查询,以及索引的维护等. 一.创建索引 1. 默认索引 MongoDB有个默认的"_id"的键,他相当于"主键"的角色.集合创建后系统会自动创建一个索引在"_id"键上,它是默认索引,索引名叫"_id_

  • java操作mongodb基础(查询 排序 输出list)

    复制代码 代码如下: package com.infomorrow.webroot; import java.util.List; import com.mongodb.BasicDBObject;import com.mongodb.DB;import com.mongodb.DBCollection;import com.mongodb.DBCursor;import com.mongodb.DBObject;import com.mongodb.MongoClient; public cl

  • Mongodb索引的优化

    MongoDB 是一个基于分布式文件存储的数据库.由 C++ 语言编写.旨在为 WEB 应用提供可扩展的高性能数据存储解决方案.MongoDB索引几乎和关系型数据库的索引一样.MongoDB的查询优化器能够使用这种数据结构来快速的对集合(collection)中的文档(collection)进行寻找和排序.准确来说,这些索引是通过B-Tree索引来实现的.在命令行中,可以通过调用ensureIndex()函数来建立索引,该函数指定一个到多个需要索引的字段,下面介绍mongodb索引如何优化 一.

  • PHP中MongoDB数据库的连接、添加、修改、查询、删除等操作实例

    PHP 扩展mongon.mod.dll下载http://cn.php.net/manual/en/mongo.installation.php#mongo.installation.windows 然后php.ini添加 extension=php_mongo.dll 最后phpinfo() 查找到 表标PHP已经自带了mongo功能,你就可以操作下面的代码(但是你必须有安装mongodb服务器) 一.连接数据库 使用下面的代码创建一个数据库链接 复制代码 代码如下: <?php $conne

  • MongoDB各种查询操作详解

    一.find操作 MongoDB中使用find来进行查询,通过指定find的第一个参数可以实现全部和部分查询. 1.查询全部 空的查询文档{}会匹配集合的全部内容.如果不指定查询文档,默认就是{}. 2.部分查询 3.键的筛选 键的筛选是查询时只返回自己感兴趣的键值,通过指定find的第二个参数来实现.这样可以节省传输的数据量,又能节省客户端解码文档的时间和内存消耗. 查询时,数据库所关心的查询文档的值必须是常量. 二.查询条件 1.比较查询 $lt,$lte,$gt,$gte,$ne和<,<

  • Java操作MongoDB模糊查询和分页查询

    本文实例为大家分享了Java操作MongoDB模糊查询和分页查询,供大家参考,具体内容如下 模糊查询条件: 1.完全匹配 Pattern pattern = Pattern.compile("^name$", Pattern.CASE_INSENSITIVE); 2.右匹配 Pattern pattern = Pattern.compile("^.*name$", Pattern.CASE_INSENSITIVE); 3.左匹配 Pattern pattern =

随机推荐