Python OpenCV 直方图的计算与显示的方法示例

本篇文章介绍如何用OpenCV Python来计算直方图,并简略介绍用NumPy和Matplotlib计算和绘制直方图

直方图的背景知识、用途什么的就直接略过去了。这里直接介绍方法。

计算并显示直方图

与C++中一样,在Python中调用的OpenCV直方图计算函数为cv2.calcHist。

cv2.calcHist的原型为:

cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate ]]) #返回hist 

通过一个例子来了解其中的各个参数:

#coding=utf-8
import cv2
import numpy as np 

image = cv2.imread("D:/histTest.jpg", 0)
hist = cv2.calcHist([image],
  [0], #使用的通道
  None, #没有使用mask
  [256], #HistSize
  [0.0,255.0]) #直方图柱的范围 

其中第一个参数必须用方括号括起来。

第二个参数是用于计算直方图的通道,这里使用灰度图计算直方图,所以就直接使用第一个通道;

第三个参数是Mask,这里没有使用,所以用None。

第四个参数是histSize,表示这个直方图分成多少份(即多少个直方柱)。第二个例子将绘出直方图,到时候会清楚一点。

第五个参数是表示直方图中各个像素的值,[0.0, 256.0]表示直方图能表示像素值从0.0到256的像素。

最后是两个可选参数,由于直方图作为函数结果返回了,所以第六个hist就没有意义了(待确定)

最后一个accumulate是一个布尔值,用来表示直方图是否叠加。

彩色图像不同通道的直方图

下面来看下彩色图像的直方图处理。以最著名的lena.jpg为例,首先读取并分离各通道:

import cv2
import numpy as np   

img = cv2.imread("D:/lena.jpg")
b, g, r = cv2.split(img) 

接着计算每个通道的直方图,这里将其封装成一个函数:

def calcAndDrawHist(image, color):
  hist= cv2.calcHist([image], [0], None, [256], [0.0,255.0])
  minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(hist)
  histImg = np.zeros([256,256,3], np.uint8)
  hpt = int(0.9* 256);  

  for h in range(256):
    intensity = int(hist[h]*hpt/maxVal)
    cv2.line(histImg,(h,256), (h,256-intensity), color)  

  return histImg;  

这里只是之前代码的简单封装,所以注释就省掉了。

接着在主函数中使用:

if __name__ == '__main__':
  img = cv2.imread("D:/lena.jpg")
  b, g, r = cv2.split(img)  

  histImgB = calcAndDrawHist(b, [255, 0, 0])
  histImgG = calcAndDrawHist(g, [0, 255, 0])
  histImgR = calcAndDrawHist(r, [0, 0, 255])  

  cv2.imshow("histImgB", histImgB)
  cv2.imshow("histImgG", histImgG)
  cv2.imshow("histImgR", histImgR)
  cv2.imshow("Img", img)
  cv2.waitKey(0)
  cv2.destroyAllWindows()  

这样就能得到三个通道的直方图了,如下:

更进一步

这样做有点繁琐,参考abid rahman的做法,无需分离通道,用折线来描绘直方图的边界可在一副图中同时绘制三个通道的直方图。方法如下:

#coding=utf-8
import cv2
import numpy as np  

img = cv2.imread('D:/lena.jpg')
h = np.zeros((256,256,3)) #创建用于绘制直方图的全0图像  

bins = np.arange(256).reshape(256,1) #直方图中各bin的顶点位置
color = [ (255,0,0),(0,255,0),(0,0,255) ] #BGR三种颜色
for ch, col in enumerate(color):
  originHist = cv2.calcHist([img],[ch],None,[256],[0,256])
  cv2.normalize(originHist, originHist,0,255*0.9,cv2.NORM_MINMAX)
  hist=np.int32(np.around(originHist))
  pts = np.column_stack((bins,hist))
  cv2.polylines(h,[pts],False,col)  

h=np.flipud(h)  

cv2.imshow('colorhist',h)
cv2.waitKey(0)  

结果如下图所示:

代码说明:

这里的for循环是对三个通道遍历一次,每次绘制相应通道的直方图的折线。for循环的第一行是计算对应通道的直方图,经过上面的介绍,应该很容易就能明白。

这里所不同的是没有手动的计算直方图的最大值再乘以一个系数,而是直接调用了OpenCV的归一化函数。该函数将直方图的范围限定在0-255×0.9之间,与之前的一样。下面的hist= np.int32(np.around(originHist))先将生成的原始直方图中的每个元素四舍六入五凑偶取整(cv2.calcHist函数得到的是float32类型的数组),接着将整数部分转成np.int32类型。即61.123先转成61.0,再转成61。注意,这里必须使用np.int32(...)进行转换,numpy的转换函数可以对数组中的每个元素都进行转换,而Python的int(...)只能转换一个元素,如果使用int(...),将导致only length-1 arrays can be converted to Python scalars错误。

下面的pts = np.column_stack((bins,hist))是将直方图中每个bin的值转成相应的坐标。比如hist[0] =3,...,hist[126] = 178,...,hist[255] = 5;而bins的值为[[0],[1],[2]...,[255]]。使用np.column_stack将其组合成[0, 3]、[126, 178]、[255, 5]这样的坐标作为元素组成的数组。

最后使用cv2.polylines函数根据这些点绘制出折线,第三个False参数指出这个折线不需要闭合。第四个参数指定了折线的颜色。

当所有完成后,别忘了用h = np.flipud(h)反转绘制好的直方图,因为绘制时,[0,0]在图像的左上角。这在直方图可视化一节中有说明。

NumPy版的直方图计算

在查阅abid rahman的资料时,发现他用NumPy的直方图计算函数np.histogram也实现了相同的效果。如下:

#coding=utf-8
import cv2
import numpy as np 

img = cv2.imread('D:/lena.jpg')
h = np.zeros((300,256,3))
bins = np.arange(257)
bin = bins[0:-1]
color = [ (255,0,0),(0,255,0),(0,0,255) ] 

for ch,col in enumerate(color):
  item = img[:,:,ch]
  N,bins = np.histogram(item,bins)
  v=N.max()
  N = np.int32(np.around((N*255)/v))
  N=N.reshape(256,1)
  pts = np.column_stack((bin,N))
  cv2.polylines(h,[pts],False,col) 

h=np.flipud(h) 

cv2.imshow('img',h)
cv2.waitKey(0) 

效果图和上面的一个相同。NumPy的histogram函数将在NumPy通用函数这篇博文中介绍,这里就不详细解释了。这里采用的是与一开始相同的比例系数的方法,参考本文的第二节。

另外,通过NumPy和matplotlib可以更方便的绘制出直方图,下面的代码供大家参考,如果有机会,再写的专门介绍matplotlib的文章。

import matplotlib.pyplot as plt
import numpy as np
import cv2 

img = cv2.imread('D:/lena.jpg')
bins = np.arange(257) 

item = img[:,:,1]
hist,bins = np.histogram(item,bins)
width = 0.7*(bins[1]-bins[0])
center = (bins[:-1]+bins[1:])/2
plt.bar(center, hist, align = 'center', width = width)
plt.show() 

这里显示的是绿色通道的直方图。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • Java基于直方图应用的相似图片识别实例
  • python OpenCV学习笔记之绘制直方图的方法
  • 详解python OpenCV学习笔记之直方图均衡化
  • python OpenCV学习笔记实现二维直方图
  • python OpenCV学习笔记直方图反向投影的实现
  • Java+opencv3.2.0之直方图均衡详解
(0)

相关推荐

  • python OpenCV学习笔记实现二维直方图

    本文介绍了python OpenCV学习笔记实现二维直方图,分享给大家,具体如下: 官方文档 – https://docs.opencv.org/3.4.0/dd/d0d/tutorial_py_2d_histogram.html 在前一篇文章中,我们计算并绘制了一维的直方图.它被称为一维,因为我们只考虑一个特性,即像素的灰度强度值.但是在二维直方图中,你可以考虑两个特征.通常它用于寻找颜色直方图,其中两个特征是每个像素的色调和饱和度值. 有一个python样例(samples/python/c

  • Java+opencv3.2.0之直方图均衡详解

    直方图均衡化是通过拉伸像素强度分布范围来增强图像对比度的一种方法. 直方图均衡化的步骤: 1.计算输入图像的直方图H 2.进行直方图归一化,使直方图组距的和为255 3.计算直方图积分 4.采用H'作为查询表:dst(x,y)=H'(src(x,y))进行图像变换 函数:Imgproc.equalizeHist(Mat src, Mat dst) 参数说明: src:源图像 dst:运算结果图像 示例代码: public static void main(String[] args) { Sys

  • python OpenCV学习笔记之绘制直方图的方法

    本篇文章主要介绍了python OpenCV学习笔记之绘制直方图的方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考.一起跟随小编过来看看吧 官方文档 – https://docs.opencv.org/3.4.0/d1/db7/tutorial_py_histogram_begins.html 直方图会让你对图像的强度分布有一个全面的认识.它是一个在x轴上带有像素值(从0到255,但不总是),在y轴上的图像中对应的像素数量的图. 这只是理解图像的另一种方式.通过观察图像的直方图,你可以直

  • 详解python OpenCV学习笔记之直方图均衡化

    本文介绍了python OpenCV学习笔记之直方图均衡化,分享给大家,具体如下: 官方文档 – https://docs.opencv.org/3.4.0/d5/daf/tutorial_py_histogram_equalization.html 考虑一个图像,其像素值仅限制在特定的值范围内.例如,更明亮的图像将使所有像素都限制在高值中.但是一个好的图像会有来自图像的所有区域的像素.所以你需要把这个直方图拉伸到两端(如下图所给出的),这就是直方图均衡的作用(用简单的话说).这通常会改善图像的

  • Java基于直方图应用的相似图片识别实例

    本文实例讲述了Java实现基于直方图应用的相似图片识别,是非常实用的技巧.分享给大家供大家参考.具体分析如下: 一.算法概述: 首先对源图像与要筛选的图像进行直方图数据采集,对采集的各自图像直方图进行归一化再使用巴氏系数算法对直方图数据进行计算,最终得出图像相似度值,其值范围在[0, 1]之间 0表示极其不同,1表示极其相似(相同). 二.算法步骤详解: 大致可以分为两步,根据源图像与候选图像的像素数据,生成各自直方图数据.第二步:使用第一步输出的直方图结果,运用巴氏系数(Bhattachary

  • python OpenCV学习笔记直方图反向投影的实现

    本文介绍了python OpenCV学习笔记直方图反向投影的实现,分享给大家,具体如下: 官方文档 – https://docs.opencv.org/3.4.0/dc/df6/tutorial_py_histogram_backprojection.html 它用于图像分割或寻找图像中感兴趣的对象.简单地说,它创建一个与我们的输入图像相同大小(但单通道)的图像,其中每个像素对应于属于我们对象的像素的概率.输出图像将使我们感兴趣的对象比其余部分更白. 该怎么做呢?我们创建一个图像的直方图,其中包

  • Python OpenCV 直方图的计算与显示的方法示例

    本篇文章介绍如何用OpenCV Python来计算直方图,并简略介绍用NumPy和Matplotlib计算和绘制直方图 直方图的背景知识.用途什么的就直接略过去了.这里直接介绍方法. 计算并显示直方图 与C++中一样,在Python中调用的OpenCV直方图计算函数为cv2.calcHist. cv2.calcHist的原型为: cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate ]]) #返回his

  • Python+opencv 实现图片文字的分割的方法示例

    实现步骤: 1.通过水平投影对图形进行水平分割,获取每一行的图像: 2.通过垂直投影对分割的每一行图像进行垂直分割,最终确定每一个字符的坐标位置,分割出每一个字符: 先简单介绍一下投影法:分别在水平和垂直方向对预处理(二值化)的图像某一种像素进行统计,对于二值化图像非黑即白,我们通过对其中的白点或者黑点进行统计,根据统计结果就可以判断出每一行的上下边界以及每一列的左右边界,从而实现分割的目的. 下面通过Python+opencv来实现该功能 首先来实现水平投影: import cv2 impor

  • python opencv将图片转为灰度图的方法示例

    使用opencv将图片转为灰度图主要有两种方法,第一种是将彩色图转为灰度图,第二种是在使用OpenCV读取图片的时候直接读取为灰度图. 将彩色图转为灰度图 import cv2 import numpy as np if __name__ == "__main__": img_path = "timg.jpg" img = cv2.imread(img_path) #获取图片的宽和高 width,height = img.shape[:2][::-1] #将图片缩小

  • python opencv根据颜色进行目标检测的方法示例

    颜色目标检测就是根据物体的颜色快速进行目标定位.使用cv2.inRange函数设定合适的阈值,即可以选出合适的目标. 建立项目colordetect.py,代码如下: #! /usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import cv2 def colorDetect(): image = cv2.imread('./1.png') # 使用RGB颜色空间检测红 蓝 黄 灰,设置合适的阈值 boundaries

  • python opencv 直方图反向投影的方法

    本文介绍了python opencv 直方图反向投影的方法,分享给大家,具体如下: 目标: 直方图反向投影 原理: 反向投影可以用来做图像分割,寻找感兴趣区间.它会输出与输入图像大小相同的图像,每一个像素值代表了输入图像上对应点属于目标对象的概率,简言之,输出图像中像素值越高的点越可能代表想要查找的目标.直方图投影经常与camshift(追踪算法)算法一起使用. 算法实现的方法,首先要为包含我们感兴趣区域的图像建立直方图(样例要找一片草坪,其他的不要).被查找的对象最好是占据整个图像(图像里全是

  • Python OpenCV直方图均衡化详解

    目录 前言 灰度直方图均衡化 颜色直方图均衡化 前言 图像处理技术是计算机视觉项目的核心,通常是计算机视觉项目中的关键工具,可以使用它们来完成各种计算机视觉任务.在本文中,将介绍如何使用 OpenCV 函数 cv2.equalizeHist() 执行直方图均衡,并将其应用于灰度和彩色图像,cv2.equalizeHist() 函数将亮度归一化并提高图像的对比度. 灰度直方图均衡化 使用 cv2.equalizeHist() 函数来均衡给定灰度图像的对比度: # 加载图像并转换为灰度图像 imag

  • Python OpenCV中的drawMatches()关键匹配绘制方法

    目录 作用说明 函数原型 参数详解 结果 作用说明 该方法被用于绘制关键点的匹配情况.我们看到的许多匹配结果都是使用这一方法绘制的——一左一右两张图像,匹配的关键点之间用线条链接. 函数原型 cv.drawMatches( img1, keypoints1, img2, keypoints2, matches1to2, outImg[, matchColor[, singlePointColor[, matchesMask[, flags]]]]) -> outImg cv.drawMatche

  • python+opencv图像分割实现分割不规则ROI区域方法汇总

    在图像分割领域,一个重要任务便是分割出感兴趣(ROI)区域.如果是简易的矩形ROI区域其实是非常容易分割的,opencv的官方python教程里也有教到最简易的矩形ROI分割(剪裁),其本质是多维数组(矩阵)的切片.但是现实情况中,ROI是不规则的多边形,也可能是曲线边界,那么该如何分割出来呢?下面总结几种思路. 可能只提供核心部分的代码示例,具体应用要结合你自己的项目来修正. 一.已知边界坐标,直接画出多边形 例:最基础的画个四边形 # 定义四个顶点坐标 pts = np.array([[10

  • python使用datetime模块计算各种时间间隔的方法

    本文实例讲述了python使用datetime模块计算各种时间间隔的方法.分享给大家供大家参考.具体分析如下: python中通过datetime模块可以很方便的计算两个时间的差,datetime的时间差单位可以是天.小时.秒,甚至是微秒,下面的代码就演示了datetime模块在计算时间差时的强大功能 # -*- coding: utf-8 -*- #!/usr/bin/env python import datetime #datetime一般的时间计算 d1 = datetime.datet

  • python实现在控制台输入密码不显示的方法

    本文实例讲述了python实现在控制台输入密码不显示的方法.分享给大家供大家参考.具体实现方法如下: import console; namespace console{ //控制台读取密码,并显示星号 getPassword = function(){ var tstr = {}; var input = kbRead(true); while( input.wVirtualKeyCode != 0xD/*_VK_ENTER*/ ){ if( input.uChar.asciiChar ){

随机推荐